module Data.TreeSeq.Strict.Zipper where
import Control.Arrow (Kleisli(..))
+import Control.Category (Category(..), (>>>))
import Control.Applicative (Applicative(..), Alternative(..))
-import Control.Monad (Monad(..), (>=>))
+import Control.Monad (Monad(..))
import Data.Bool
import Data.Eq (Eq)
-import Data.Function (($), (.))
+import Data.Function (($))
import Data.Functor ((<$>))
import Data.Int (Int)
import Data.List.NonEmpty (NonEmpty(..))
-- | Return the 'Cursor' after zipping the given 'Zipper' upto its last parent.
root :: Zipper k a -> Cursor k a
-root = NonEmpty.head . List.last . axis_ancestor_or_self
+root = NonEmpty.head . List.last . runAxis axis_ancestor_or_self
+
+-- | Like 'root', but concatenate the 'Cursor' into a 'Trees'.
+roots :: Zipper k a -> Trees k a
+roots z = cursor_preceding_siblings <> (cursor_self <| cursor_following_siblings)
+ where Cursor{..} = root z
-- | Return the keys within the 'TreeN' nodes
-- leading to the current 'Cursor' of the given 'Zipper'.
-path :: Zipper k x -> [k]
-path cs =
+zipath :: Zipper k x -> [k]
+zipath z =
List.reverse $
- NonEmpty.toList cs >>= \c ->
+ NonEmpty.toList z >>= \c ->
case cursor_self c of
TreeN k _ -> [k]
Tree0{} -> []
--- | Return the 'Tree' currently under the 'Cursor'.
-current :: Zipper k a -> Tree k a
-current (Cursor _ t _ :| _) = t
-
-- | Return the 'Tree's selected by the given 'Axis' from the given 'Zipper'.
select :: Axis k a -> Zipper k a -> [Tree k a]
-select axis c = cursor_self . NonEmpty.head <$> axis c
+select axis z = cursor_self . NonEmpty.head <$> runAxis axis z
-- | Return the filtered values selected by the given 'Axis' from the given 'Zipper'.
filter :: Axis k a -> (Zipper k a -> Maybe b) -> Zipper k a -> [b]
-filter axis f c = f `mapMaybe` axis c
+filter axis f z = f `mapMaybe` runAxis axis z
-- ** Type 'Cursor'
data Cursor k a
= Cursor
- { cursor_precedings :: Trees k a
- , cursor_self :: Tree k a
- , cursor_followings :: Trees k a
+ { cursor_preceding_siblings :: Trees k a
+ , cursor_self :: Tree k a
+ , cursor_following_siblings :: Trees k a
} deriving (Eq, Show, Typeable)
--- * Type 'Axis'
-type Axis k a = Zipper k a -> [Zipper k a]
+-- | Return the current 'Cursor' of a 'Zipper'.
+cursor :: Zipper k a -> Cursor k a
+cursor = NonEmpty.head
+
+-- | Set the current 'Cursor' of a 'Zipper'.
+setCursor :: Zipper k a -> Cursor k a -> Zipper k a
+setCursor (_c :| cs) c = c :| cs
--- ** Type 'KleisliAxis'
-type KleisliAxis k a = Kleisli [] (Zipper k a) (Zipper k a)
+-- | Return the 'Tree' currently under the 'Cursor'.
+current :: Zipper k a -> Tree k a
+current (Cursor _ t _ :| _) = t
+
+-- ** Type 'Axis'
+type Axis k a = AxisAlt [] k a
+
+runAxis :: Axis k a -> Zipper k a -> [Zipper k a]
+runAxis = runKleisli
-- ** Type 'AxisAlt'
-- | Like 'Axis', but generalized with 'Alternative'.
--
-- Useful to return a 'Maybe' instead of a list.
-type AxisAlt f k a = Zipper k a -> f (Zipper k a)
+type AxisAlt f k a = Kleisli f (Zipper k a) (Zipper k a)
+
+runAxisAlt :: AxisAlt f k a -> Zipper k a -> f (Zipper k a)
+runAxisAlt = runKleisli
-- ** Axis @repeat@
-- | Collect all 'Zipper's along a given axis,
-- including the first 'Zipper'.
axis_repeat :: AxisAlt Maybe k a -> Axis k a
-axis_repeat f c = c : maybe [] (axis_repeat f) (f c)
+axis_repeat f = Kleisli $ \z -> z : maybe [] (runAxis $ axis_repeat f) (runAxisAlt f z)
-- | Collect all 'Zipper's along a given axis,
-- excluding the starting 'Zipper'.
axis_repeat_without_self :: AxisAlt Maybe k a -> Axis k a
-axis_repeat_without_self f c = maybe [] (axis_repeat f) (f c)
+axis_repeat_without_self f = Kleisli $ \z -> maybe [] (runAxis $ axis_repeat f) (runAxisAlt f z)
-- ** Axis @filter@
axis_filter :: Axis k a -> (Zipper k a -> Bool) -> Axis k a
-axis_filter axis f c = List.filter f (axis c)
+axis_filter axis f = Kleisli $ \z -> List.filter f (runAxis axis z)
infixl 5 `axis_filter`
+axis_filter_current :: Axis k a -> (Tree k a -> Bool) -> Axis k a
+axis_filter_current axis f = Kleisli $ \z -> List.filter (f . current) (runAxis axis z)
+infixl 5 `axis_filter_current`
+
+-- ** Axis @first@
+axis_first :: Axis k a -> Axis k a
+axis_first axis = Kleisli $ List.take 1 . runAxis axis
+
+-- ** Axis @last@
+axis_last :: Axis k a -> Axis k a
+axis_last axis = Kleisli $ List.take 1 . List.reverse . runAxis axis
+
-- ** Axis @at@
axis_at :: Alternative f => Axis k a -> Int -> AxisAlt f k a
-axis_at axis i c =
- case List.drop i $ axis c of
+axis_at axis i = Kleisli $ \z ->
+ case List.drop i $ runAxis axis z of
[] -> empty
a:_ -> pure a
infixl 5 `axis_at`
-- ** Axis @self@
axis_self :: Applicative f => AxisAlt f k a
-axis_self = pure
+axis_self = Kleisli pure
-- ** Axis @child@
axis_child :: Axis k a
-axis_child c =
- axis_child_first c >>=
- axis_repeat axis_following1
+axis_child =
+ axis_child_first >>>
+ axis_repeat axis_following_sibling_nearest
axis_child_lookup_first :: Alternative f => (k -> Bool) -> AxisAlt f k a
-axis_child_lookup_first fk c = listHead $ axis_child_lookup fk c
+axis_child_lookup_first fk = Kleisli $ listHead . runAxis (axis_child_lookup fk)
axis_child_lookup :: (k -> Bool) -> Axis k a
-axis_child_lookup fk cs@(Cursor _ps t _fs :| _) =
+axis_child_lookup fk = Kleisli $ \z@(Cursor _ps t _fs :| _) ->
+ let ns = nodesTree t in
(<$> Seq.findIndicesL flt ns) $ \i ->
let (ps, ps') = Seq.splitAt i ns in
case Seq.viewl ps' of
EmptyL -> undefined
- l :< ls -> Cursor ps l ls :| NonEmpty.toList cs
+ l :< ls -> Cursor ps l ls :| NonEmpty.toList z
where
- ns = nodesTree t
- flt (TreeN k _) = fk k
- flt Tree0{} = False
+ flt = \case
+ TreeN k _ -> fk k
+ Tree0{} -> False
axis_child_first :: Alternative f => AxisAlt f k a
-axis_child_first cs@(Cursor _ps t _fs :| _) =
+axis_child_first = Kleisli $ \z@(Cursor _ps t _fs :| _) ->
case Seq.viewl $ nodesTree t of
EmptyL -> empty
- l :< ls -> pure $ Cursor mempty l ls :| NonEmpty.toList cs
+ l :< ls -> pure $ Cursor mempty l ls :| NonEmpty.toList z
axis_child_last :: Alternative f => AxisAlt f k a
-axis_child_last cs@(Cursor _ps t _fs :| _) =
+axis_child_last = Kleisli $ \z@(Cursor _ps t _fs :| _) ->
case Seq.viewr $ nodesTree t of
EmptyR -> empty
- rs :> r -> pure $ Cursor rs r mempty :| NonEmpty.toList cs
+ rs :> r -> pure $ Cursor rs r mempty :| NonEmpty.toList z
-- ** Axis @ancestor@
axis_ancestor :: Axis k a
axis_ancestor_or_self = axis_repeat axis_parent
axis_root :: Alternative f => AxisAlt f k a
-axis_root = pure . List.last . axis_ancestor_or_self
+axis_root = Kleisli $ pure . List.last . runAxis axis_ancestor_or_self
-- ** Axis @descendant@
axis_descendant_or_self :: Axis k a
axis_descendant_or_self =
- collect_child []
+ Kleisli $ collect_child []
where
- collect_child acc c =
- c : maybe acc
+ collect_child acc z =
+ z : maybe acc
(collect_following_first acc)
- (axis_child_first c)
- collect_following_first acc c =
+ (runAxisAlt axis_child_first z)
+ collect_following_first acc z =
collect_child
(maybe acc
(collect_following_first acc)
- (axis_following1 c)
- ) c
+ (runAxisAlt axis_following_sibling_nearest z)
+ ) z
axis_descendant_or_self_reverse :: Axis k a
-axis_descendant_or_self_reverse c =
- c :
- List.concatMap
- axis_descendant_or_self_reverse
- (List.reverse $ axis_child c)
+axis_descendant_or_self_reverse = Kleisli go
+ where go z = z : List.concatMap go (List.reverse $ runAxis axis_child z)
axis_descendant :: Axis k a
-axis_descendant = List.tail . axis_descendant_or_self
+axis_descendant = Kleisli $ List.tail . runAxis axis_descendant_or_self
-- ** Axis @preceding@
-axis_preceding1 :: Alternative f => AxisAlt f k a
-axis_preceding1 (Cursor ps t fs :| cs) =
+axis_preceding_sibling :: Axis k a
+axis_preceding_sibling = axis_repeat_without_self axis_preceding_sibling_nearest
+
+axis_preceding_sibling_nearest :: Alternative f => AxisAlt f k a
+axis_preceding_sibling_nearest = Kleisli $ \(Cursor ps t fs :| cs) ->
case Seq.viewr ps of
EmptyR -> empty
rs :> r -> pure $ Cursor rs r (t <| fs) :| cs
-axis_preceding_sibling :: Axis k a
-axis_preceding_sibling = axis_repeat_without_self axis_preceding1
-
-axis_preceding_sibling_first :: Alternative f => AxisAlt f k a
-axis_preceding_sibling_first z@(Cursor ps t fs :| cs) =
+axis_preceding_sibling_farthest :: Alternative f => AxisAlt f k a
+axis_preceding_sibling_farthest = Kleisli $ \z@(Cursor ps t fs :| cs) ->
case Seq.viewl (ps |> t) of
EmptyL -> pure z
l :< ls -> pure $ Cursor mempty l (ls<>fs) :| cs
axis_preceding :: Axis k a
axis_preceding =
- axis_ancestor_or_self >=>
- axis_preceding_sibling >=>
+ axis_ancestor_or_self >>>
+ axis_preceding_sibling >>>
axis_descendant_or_self_reverse
-- ** Axis @following@
-axis_following1 :: Alternative f => AxisAlt f k a
-axis_following1 (Cursor ps t fs :| cs) =
+axis_following_sibling :: Axis k a
+axis_following_sibling = axis_repeat_without_self axis_following_sibling_nearest
+
+axis_following_sibling_nearest :: Alternative f => AxisAlt f k a
+axis_following_sibling_nearest = Kleisli $ \(Cursor ps t fs :| cs) ->
case Seq.viewl fs of
EmptyL -> empty
l :< ls -> pure $ Cursor (ps |> t) l ls :| cs
-axis_following_sibling :: Axis k a
-axis_following_sibling = axis_repeat_without_self axis_following1
-
-axis_following_sibling_last :: Alternative f => AxisAlt f k a
-axis_following_sibling_last z@(Cursor ps t fs :| cs) =
+axis_following_sibling_farthest :: Alternative f => AxisAlt f k a
+axis_following_sibling_farthest = Kleisli $ \z@(Cursor ps t fs :| cs) ->
case Seq.viewr (t <| fs) of
EmptyR -> pure z
rs :> r -> pure $ Cursor (ps<>rs) r mempty :| cs
axis_following :: Axis k a
axis_following =
- axis_ancestor_or_self >=>
- axis_following_sibling >=>
+ axis_ancestor_or_self >>>
+ axis_following_sibling >>>
axis_descendant_or_self
-- ** Axis @parent@
axis_parent :: Alternative f => AxisAlt f k a
-axis_parent (Cursor ps t fs :| cs) =
+axis_parent = Kleisli $ \(Cursor ps t fs :| cs) ->
case cs of
Cursor ps' (TreeN k _) fs' : cs' ->
pure $ Cursor ps' (TreeN k $ (ps |> t) <> fs) fs' :| cs'