{-| Module : Gargantext.Text.Eleve Description : Unsupervized Word segmentation Copyright : (c) CNRS, 2019-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX # Implementation of Unsupervized Word Segmentation References: - Python implementation (Korantin August, Emmanuel Navarro): [EleVe](https://github.com/kodexlab/eleve.git) - Unsupervized Word Segmentation:the case for Mandarin Chinese Pierre Magistry, Benoît Sagot, Alpage, INRIA & Univ. Paris 7, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics , pages 383–387. [PDF](https://www.aclweb.org/anthology/P12-2075) Notes for current implementation: - TODO fix normalization - TODO extract longer ngrams (see paper above, viterbi algo can be used) - TODO AD TEST: prop (Node c _e f) = c == Map.size f - AD: Real ngrams extraction test from Gargantext.Text.Terms import extractTermsUnsupervised docs <- runCmdRepl $ selectDocs 1004 extractTermsUnsupervised 3 $ DT.intercalate " " $ catMaybes $ Gargantext.map _hyperdataDocument_abstract docs -} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} module Gargantext.Text.Eleve where import Debug.Trace (trace) -- import Debug.SimpleReflect import Control.Lens (Lens', Getting, (^.), (^?), view, makeLenses, _Just) import Control.Monad (foldM, mapM_, forM_) import Data.Ord (Ord) import qualified Data.List as L import Data.Monoid import Data.Text (Text) import qualified Data.Text as T import Data.Map (Map) import Data.Maybe (fromMaybe, catMaybes) import qualified Data.Map as Map import Gargantext.Prelude hiding (cs) import qualified Data.Tree as Tree import Data.Tree (Tree) import qualified Prelude as P (putStrLn, logBase, isNaN, RealFloat) type Entropy e = ( Fractional e , Floating e , P.RealFloat e , Show e -- ^ TODO: only used for debugging ) ------------------------------------------------------------------------ -- | Example and tests for development data I e = I { _info_entropy :: e , _info_autonomy :: e } instance Show e => Show (I e) where show (I e n) = show (e, n) makeLenses ''I type ModEntropy i o e = (e -> e) -> i -> o set_autonomy :: ModEntropy e (I e) e set_autonomy f e = I e (f e) data StartStop = Start | Stop deriving (Ord, Eq, Show) data Token = NonTerminal Text | Terminal StartStop deriving (Ord, Eq, Show) isTerminal :: Token -> Bool isTerminal (Terminal _) = True isTerminal (NonTerminal _) = False parseToken :: Text -> Token parseToken "" = Terminal Start parseToken "" = Terminal Stop parseToken t = NonTerminal t toToken :: [Text] -> [Token] toToken xs = Terminal Start : (NonTerminal <$> xs) <> [Terminal Stop] printToken :: Token -> Text printToken = f where f (NonTerminal x) = x f (Terminal Start) = "" f (Terminal Stop) = "" ------------------------------------------------------------------------ data Trie k e = Node { _node_count :: Int , _node_entropy :: e , _node_children :: Map k (Trie k e) } | Leaf { _node_count :: Int } deriving (Show) makeLenses ''Trie insertTries :: Ord k => [[k]] -> Trie k () insertTries = L.foldr insertTrie emptyTrie insertTrie :: Ord k => [k] -> Trie k () -> Trie k () insertTrie [] n = n { _node_count = _node_count n +1} insertTrie (x:xs) (Leaf c) = mkTrie (c+1) $ Map.singleton x $ insertTrie xs emptyTrie insertTrie (x:xs) (Node c _e children) = mkTrie (c+1) $ Map.alter f x children where f = Just . insertTrie xs . fromMaybe emptyTrie -- emptyTrie :: (Ord k, Monoid e) => Trie k e -- emptyTrie = Node 0 mempty mempty emptyTrie :: Trie k e emptyTrie = Leaf 0 mkTrie :: Monoid e => Int -> Map k (Trie k e) -> Trie k e mkTrie c children | Map.null children = Leaf c | otherwise = Node c mempty children ----------------------------- -- | Trie to Tree since Tree as nice print function toTree :: k -> Trie k e -> Tree (k,Int,Maybe e) toTree k (Leaf c) = Tree.Node (k, c, Nothing) [] toTree k (Node c e cs) = Tree.Node (k, c, Just e) (map (uncurry toTree) $ Map.toList cs) ------------------------------------------------------------------------ ------------------------------------------------------------------------ nan :: Floating e => e nan = 0 / 0 noNaNs :: P.RealFloat e => [e] -> [e] noNaNs = filter (not . P.isNaN) updateIfDefined :: P.RealFloat e => e -> e -> e updateIfDefined e0 e | P.isNaN e = e0 | otherwise = e entropyTrie :: Floating e => (k -> Bool) -> Trie k () -> Trie k e entropyTrie _ (Leaf c) = Leaf c entropyTrie pred (Node c () children) = Node c e (map (entropyTrie pred) children) where e = sum $ map f $ Map.toList children f (k, child) = if pred k then chc * P.logBase 2 (fromIntegral c) else - chc * P.logBase 2 chc where chc = fromIntegral (_node_count child) / fromIntegral c ------------------------------------------------------------------------ normalizeLevel :: Entropy e => [e] -> e -> e normalizeLevel = checkDiff (go . noNaNs) where -- checkDiff f es e = let e' = f es e in if e == e' then e' else trace ("normalizeLevel: diff " <> show e <> " " <> show e') e' checkDiff = identity go [] = panic "normalizeLevel: impossible" -- trace "normalizeLevel" -- go [_] = identity go es = \e -> (e - m) / v {- in if P.isNaN e' then trace ("normalizeLevel " <> show (e,m,v,es)) e else e' -} where m = mean es v = deviation es {- Unused nodeChildren :: Trie k e -> Map k (Trie k e) nodeChildren (Node _ _ cs) = cs nodeChildren (Leaf _) = Map.empty -} class IsTrie trie where buildTrie :: Floating e => [[Token]] -> trie Token e nodeEntropy :: Entropy e => Getting e i e -> trie k i -> e nodeChild :: Ord k => k -> trie k e -> trie k e findTrie :: Ord k => [k] -> trie k e -> trie k e normalizeEntropy :: Entropy e => Getting e i e -> ModEntropy i o e -> trie k i -> trie k o nodeAutonomy :: (Ord k, Entropy e) => Getting e i e -> trie k i -> [k] -> e nodeAutonomy inE t ks = nodeEntropy inE $ findTrie ks t instance IsTrie Trie where buildTrie = entropyTrie isTerminal . insertTries nodeEntropy inE (Node _ e _) = e ^. inE nodeEntropy _ (Leaf _) = -- trace "nodeEntropy of Leaf" $ nan nodeChild k (Node _ _ cs) = fromMaybe emptyTrie (Map.lookup k cs) nodeChild _ (Leaf _) = emptyTrie findTrie ks t = L.foldl (flip nodeChild) t ks normalizeEntropy inE modE t = go (modE identity) (entropyLevels inE t) t where go _ [] _ = panic "normalizeEntropy' empty levels" go _ _ (Leaf c) = Leaf c go _ ([] : _) _ = panic "normalizeEntropy': empty level" go f (es : ess) (Node c i children) = Node c (f i) $ go (modE $ normalizeLevel es) ess <$> children {- This is only normalizing a node with respect to its brothers (unlike all the nodes of the same level). normalizeEntropy inE modE = go $ modE identity where go _ (Leaf c) = Leaf c go f (Node c i children) | Map.null children = panic "normalizeEntropy: impossible" | otherwise = Node c (f i) $ go (modE $ normalizeLevel es) <$> children where es = [ i' ^. inE | Node _ i' _ <- Map.elems children ] -} ------------------------------------------------------------------------ levels :: Trie k e -> [[Trie k e]] levels = L.takeWhile (not . L.null) . L.iterate (L.concatMap subForest) . pure where subForest :: Trie k e -> [Trie k e] subForest (Leaf _) = [] subForest (Node _ _ children) = Map.elems children entropyLevels :: Entropy e => Getting e i e -> Trie k i -> [[e]] entropyLevels inE = fmap (noNaNs . map (nodeEntropy inE)) . levels ------------------------------------------------------------------------ data Tries k e = Tries { _fwd :: Trie k e , _bwd :: Trie k e } instance IsTrie Tries where buildTrie tts = Tries { _fwd = buildTrie tts , _bwd = buildTrie (reverse <$> tts) } nodeEntropy inE (Tries fwd bwd) = mean $ noNaNs [nodeEntropy inE fwd, nodeEntropy inE bwd] findTrie ks (Tries fwd bwd) = Tries (findTrie ks fwd) (findTrie (reverse ks) bwd) nodeChild k (Tries fwd bwd) = Tries (nodeChild k fwd) (nodeChild k bwd) normalizeEntropy inE modE = onTries (normalizeEntropy inE modE) onTries :: (Trie k i -> Trie k o) -> Tries k i -> Tries k o onTries f (Tries fwd bwd) = Tries (f fwd) (f bwd) ------------------------------------------------------------------------ split :: (IsTrie trie, Entropy e) => Lens' i e -> trie Token i -> [Token] -> [[Token]] split _ _ [] = [] split inE t0 (Terminal Start:xs0) = split inE (nodeChild (Terminal Start) t0) xs0 split inE t0 (x0:xs0) = go (nodeChild x0 t0) [x0] xs0 where consRev [] xss = xss consRev xs xss = reverse xs : xss go _ pref [] = [reverse pref] go _ pref (Terminal Stop:_) = [reverse pref] go t pref (Terminal Start:xs) = go t pref xs go t pref (x:xs) = -- trace (show (if acc then "ACC" else "CUT", (reverse (x : pref), ext), if acc then ">" else "<=", ((reverse pref, et), "+", ([x], ext0)))) $ if acc then go xt (x:pref) xs else consRev pref $ go xt0 [x] xs where xt = nodeChild x t xt0 = nodeChild x t0 et = ne 0 t -- ^ entropy of the current prefix ext0 = ne 0 xt0 -- ^ entropy of [x] ext = ne 0 xt -- ^ entropy of the current prefix plus x acc = ext > et + ext0 -- aut(["in","this","paper"]) > aut(["in","this"]) + aut(["paper"]) ne d t = if P.isNaN e then d else e where e = nodeEntropy inE t {- split :: Entropy e => Lens' i e -> Tries Token i -> [Token] -> [[Token]] split inE t0 ts = maximumWith (sum . map $ nodeAutonomy inE t0) (all the splits of ts) -} ------------------------------------------------------------------------ ------------------------------------------------------------------------ mainEleve :: Int -> [[Text]] -> [[[Text]]] mainEleve _ _ = [] {- mainEleve n input = map (map printToken) . split identity (t :: Trie Token Double) <$> inp where inp = toToken <$> input t = buildTrie $ L.concat $ chunkAlong n 1 <$> inp -} sim :: Entropy e => e -> e -> Bool sim x y = x == y || (P.isNaN x && P.isNaN y) chunkAlongEleve :: Int -> [a] -> [[a]] chunkAlongEleve n xs = L.take n <$> L.tails xs testEleve :: e ~ Double => Bool -> Int -> [Text] -> [(Text, Int, e, e, e, e, e)] -> IO Bool testEleve debug n output checks = do let {- pss = [ (ps, findTrie ps fwd ^? _Just . node_entropy) -- . info_entropy) | ps <- L.nub $ [ c | m <- [1..n] , cs <- chunkAlong m 1 <$> inp , c <- cs ] ] -} --res = map (map printToken) . split identity fwd <$> inp --res = map (map printToken) . split info_norm_entropy' nt' <$> inp res = map (map printToken) . split info_autonomy nt <$> inp when debug $ do P.putStrLn (show input) -- mapM_ (P.putStrLn . show) pss P.putStrLn "" -- printTrie nt printTrie (_fwd nt) printTrie (_bwd nt) P.putStrLn $ show res forM_ checks checker pure $ expected == res where out = T.words <$> output expected = fmap (T.splitOn "-") <$> out input = (T.splitOn "-" =<<) <$> out inp = toToken <$> input t = buildTrie $ L.concat $ chunkAlongEleve (n + 2) <$> inp -- nt = normalizeEntropy identity set_autonomy (fwd :: Trie Token Double) -- nt = normalizeEntropy' info_entropy (\f -> info_norm_entropy' %~ f) nt nt = normalizeEntropy identity set_autonomy t check f msg x y = if f x y then P.putStrLn $ " PASS " <> msg <> " " <> show x <> " ~= " <> show y else P.putStrLn $ " FAIL " <> msg <> " " <> show x <> " /= " <> show y checker (ngram, count, entropy, _ev, autonomy, bwd_entropy, fwd_entropy) = do let ns = parseToken <$> T.words ngram t' = findTrie ns nt P.putStrLn $ " " <> T.unpack ngram <> ":" check (==) "count" count (_node_count (_fwd t')) check sim "entropy" entropy (nodeEntropy info_entropy t') check sim "autonomy" autonomy (nodeEntropy info_autonomy t') check sim "fwd_entropy" fwd_entropy (nodeEntropy info_entropy (_fwd t')) check sim "bwd_entropy" bwd_entropy (nodeEntropy info_entropy (findTrie ns (_bwd nt))) printTrie = P.putStrLn . Tree.drawTree . fmap show . toTree (NonTerminal "") -- | TODO real data is a list of tokenized sentences example0, example1, example2, example3, example4, example5, example6 :: [Text] example0 = ["New-York is New-York and New-York"] example1 = ["to-be or not to-be"] example2 = ["to-be-or not to-be-or NOT to-be and"] example3 = example0 <> example0 -- > TEST: Should not have York New in the trie example4 = ["a-b-c-d e a-b-c-d f"] example5 = ["a-b-c-d-e f a-b-c-d-e g a-b-c-d-e"] example6 = ["le-petit chat" ,"le-petit chien" ,"le-petit rat" ,"le gros rat" ] checks0, checks2 :: [(Text, Int, Double, Double, Double, Double, Double)] checks0 = [(" New", 1, nan, nan, nan, nan, 0.0) ,("New York", 3, 1.584962500721156, 1.584962500721156, 1.414213562373095, nan, 1.584962500721156) ,("York is", 1, 0.0, nan, nan, nan, 0.0) ,("is New", 1, 0.0, nan, nan, nan, 0.0) ,("New York", 3, 1.584962500721156, 1.584962500721156, 1.414213562373095, nan, 1.584962500721156) ,("York and", 1, 0.0, nan, nan, nan, 0.0) ,("and New", 1, 0.0, nan, nan, nan, 0.0) ,("New York", 3, 1.584962500721156, 1.584962500721156, 1.414213562373095, nan, 1.584962500721156) ,("York ", 1, nan, nan, nan, nan, nan) ] checks2 = [("to be", 3, 1.2516291673878228, 1.2516291673878228, 1.5535694744293167, nan, 0.9182958340544896) ,("be or", 2, 0.5, nan, nan, nan, 1.0) ,("or not", 1, 0.0, nan, nan, nan, 0.0) ,("not to", 1, 0.0, nan, nan, nan, 0.0) ,("or NOT", 1, 0.0, nan, nan, nan, 0.0) ,("NOT to", 1, 0.0, nan, nan, nan, 0.0) ,("be and", 1, 0.0, nan, nan, nan, 0.0) ] runTests :: IO () runTests = forM_ [("example0", 2, example0, checks0) ,("example1", 2, example1, []) ,("example2", 3, example2, checks2) ,("example3", 2, example3, []) ,("example4", 4, example4, []) ,("example5", 5, example5, []) ] (\(name, n, ex, checks) -> do P.putStrLn $ name <> " " <> show n b <- testEleve False n ex checks P.putStrLn $ " splitting: " <> if b then "PASS" else "FAIL" )