{-| Module : Gargantext.Text.Flow Description : Server API Copyright : (c) CNRS, 2017-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX From text to viz, all the flow of texts in Gargantext. -} {-# OPTIONS_GHC -fno-warn-name-shadowing #-} {-# LANGUAGE NoImplicitPrelude #-} module Gargantext.Text.Flow where import GHC.IO (FilePath) import qualified Data.Text as T import Data.Text.IO (readFile) import Data.Maybe (catMaybes) import qualified Data.Set as DS import qualified Data.Array.Accelerate as A import qualified Data.Map.Strict as M ---------------------------------------------- import Gargantext.Database (Connection) import Gargantext.Database.Node import Gargantext.Database.Types.Node import Gargantext.Core (Lang) import Gargantext.Prelude import Gargantext.Viz.Graph.Index (createIndices, toIndex, map2mat, mat2map) import Gargantext.Viz.Graph.Distances.Matrice (measureConditional) import Gargantext.Viz.Graph (Graph(..), data2graph) import Gargantext.Text.Metrics.Count (cooc) import Gargantext.Text.Metrics (filterCooc, FilterConfig(..), Clusters(..), SampleBins(..), DefaultValue(..), MapListSize(..), InclusionSize(..)) import Gargantext.Text.Terms (TermType, extractTerms) import Gargantext.Text.Context (splitBy, SplitContext(Sentences)) import Gargantext.Core.Types (CorpusId) import Gargantext.Text.Parsers.CSV import Data.Graph.Clustering.Louvain.CplusPlus (cLouvain, l_community_id) {- ____ _ _ / ___| __ _ _ __ __ _ __ _ _ __ | |_ _____ _| |_ | | _ / _` | '__/ _` |/ _` | '_ \| __/ _ \ \/ / __| | |_| | (_| | | | (_| | (_| | | | | || __/> <| |_ \____|\__,_|_| \__, |\__,_|_| |_|\__\___/_/\_\\__| |___/ -} contextText :: [T.Text] contextText = map T.pack ["The dog is an animal." ,"The bird is an animal." ,"The dog is an animal." ,"The animal is a bird or a dog ?" ,"The table is an object." ,"The pen is an object." ,"The object is a pen or a table ?" ,"The girl is a human." ,"The boy is a human." ,"The boy or the girl are human." ] -- | Control the flow of text data TextFlow = CSV FilePath | FullText FilePath | Contexts [T.Text] | DBV3 Connection CorpusId | Query T.Text textFlow :: TermType Lang -> TextFlow -> IO Graph textFlow termType workType = do contexts <- case workType of FullText path -> splitBy (Sentences 5) <$> readFile path CSV path -> readCsvOn [csv_title, csv_abstract] path Contexts ctxt -> pure ctxt DBV3 con corpusId -> catMaybes <$> map (\n -> hyperdataDocumentV3_title (_node_hyperdata n) <> hyperdataDocumentV3_abstract (_node_hyperdata n))<$> getDocumentsV3WithParentId con corpusId _ -> undefined -- TODO Query not supported textFlow' termType contexts textFlow' :: TermType Lang -> [T.Text] -> IO Graph textFlow' termType contexts = do -- Context :: Text -> [Text] -- Contexts = Paragraphs n | Sentences n | Chars n myterms <- extractTerms termType contexts -- TermsType = Mono | Multi | MonoMulti -- myterms # filter (\t -> not . elem t stopList) -- # groupBy (Stem|GroupList|Ontology) printDebug "terms" myterms printDebug "myterms" (sum $ map length myterms) -- Bulding the map list -- compute copresences of terms, i.e. cooccurrences of terms in same context of text -- Cooc = Map (Term, Term) Int let myCooc1 = cooc myterms printDebug "myCooc1 size" (M.size myCooc1) -- Remove Apax: appears one time only => lighting the matrix let myCooc2 = M.filter (>0) myCooc1 printDebug "myCooc2 size" (M.size myCooc2) printDebug "myCooc2" myCooc2 -- Filtering terms with inclusion/Exclusion and Specificity/Genericity scores let myCooc3 = filterCooc ( FilterConfig (MapListSize 350 ) (InclusionSize 500 ) (SampleBins 10 ) (Clusters 3 ) (DefaultValue 0 ) ) myCooc2 printDebug "myCooc3 size" $ M.size myCooc3 printDebug "myCooc3" myCooc3 -- Cooc -> Matrix let (ti, _) = createIndices myCooc3 printDebug "ti size" $ M.size ti printDebug "ti" ti let myCooc4 = toIndex ti myCooc3 printDebug "myCooc4 size" $ M.size myCooc4 printDebug "myCooc4" myCooc4 let matCooc = map2mat (0) (M.size ti) myCooc4 printDebug "matCooc shape" $ A.arrayShape matCooc printDebug "matCooc" matCooc -- Matrix -> Clustering let distanceMat = measureConditional matCooc --let distanceMat = distributional matCooc printDebug "distanceMat shape" $ A.arrayShape distanceMat printDebug "distanceMat" distanceMat -- --let distanceMap = M.filter (>0) $ mat2map distanceMat let distanceMap = M.map (\_ -> 1) $ M.filter (>0) $ mat2map distanceMat printDebug "distanceMap size" $ M.size distanceMap printDebug "distanceMap" distanceMap -- let distance = fromIndex fi distanceMap -- printDebug "distance" $ M.size distance partitions <- cLouvain distanceMap -- Building : -> Graph -> JSON printDebug "partitions" $ DS.size $ DS.fromList $ map (l_community_id) partitions --printDebug "partitions" partitions pure $ data2graph (M.toList ti) myCooc4 distanceMap partitions