{-| Module : Gargantext.Prelude Description : Specific Prelude of the project Copyright : (c) CNRS, 2017-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX -} {-# OPTIONS_GHC -fno-warn-name-shadowing #-} {-# OPTIONS_GHC -fno-warn-type-defaults #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RankNTypes #-} module Gargantext.Prelude ( module Gargantext.Prelude , module Protolude , headMay, lastMay , module GHC.Err.Located , module Text.Show , module Text.Read , cs , module Data.Maybe , round , sortWith , module Prelude , MonadBase(..) ) where import Control.Monad.Base (MonadBase(..)) import GHC.Exts (sortWith) import GHC.Err.Located (undefined) import GHC.Real (round) import Data.Maybe (isJust, fromJust, maybe) import Data.Text (Text) import Protolude ( Bool(True, False), Int, Int64, Double, Integer , Fractional, Num, Maybe(Just,Nothing) , Enum, Bounded, Float , Floating, Char, IO , pure, (>>=), (=<<), (<*>), (<$>), (>>) , head, flip , Ord, Integral, Foldable, RealFrac, Monad, filter , reverse, map, mapM, zip, drop, take, zipWith , sum, fromIntegral, length, fmap, foldl, foldl' , takeWhile, sqrt, identity , abs, min, max, maximum, minimum, return, snd, truncate , (+), (*), (/), (-), (.), ($), (&), (**), (^), (<), (>), log , Eq, (==), (>=), (<=), (<>), (/=) , (&&), (||), not, any, all , fst, snd, toS , elem, die, mod, div, const, either , curry, uncurry, repeat , otherwise, when , IO() , compare , on , panic ) import Prelude (Enum, Bounded, minBound, maxBound, putStrLn) -- TODO import functions optimized in Utils.Count -- import Protolude hiding (head, last, all, any, sum, product, length) -- import Gargantext.Utils.Count import qualified Data.List as L hiding (head, sum) import qualified Control.Monad as M import Data.Map (Map) import qualified Data.Map as M import Data.Map.Strict (insertWith) import qualified Data.Vector as V import Safe (headMay, lastMay, initMay, tailMay) import Text.Show (Show(), show) import Text.Read (Read()) import Data.String.Conversions (cs) printDebug :: (Show a, MonadBase IO m) => [Char] -> a -> m () printDebug msg x = liftBase . putStrLn $ msg <> " " <> show x -- printDebug _ _ = pure () -- | splitEvery n == chunkAlong n n splitEvery :: Int -> [a] -> [[a]] splitEvery _ [] = [] splitEvery n xs = let (h,t) = L.splitAt n xs in h : splitEvery n t type Grain = Int type Step = Int -- | Function to split a range into chunks -- if step == grain then linearity (splitEvery) -- elif step < grain then overlapping -- else dotted with holes -- TODO FIX BUG if Steps*Grain /= length l -- chunkAlong 10 10 [1..15] == [1..10] -- BUG: what about the rest of (divMod 15 10)? -- TODO: chunkAlongNoRest or chunkAlongWithRest -- default behavior: NoRest chunkAlong :: Eq a => Grain -> Step -> [a] -> [[a]] chunkAlong a b l = case a >= length l of True -> [l] False -> chunkAlong' a b l chunkAlong' :: Eq a => Grain -> Step -> [a] -> [[a]] chunkAlong' a b l = case a > 0 && b > 0 of True -> chunkAlong'' a b l False -> panic "ChunkAlong: Parameters should be > 0 and Grain > Step" chunkAlong'' :: Eq a => Int -> Int -> [a] -> [[a]] chunkAlong'' a b l = filter (/= []) $ only (while dropAlong) where only = map (take a) while = takeWhile (\x -> length x >= a) dropAlong = L.scanl (\x _y -> drop b x) l ([1..] :: [Integer]) -- | Optimized version (Vector) chunkAlongV :: Int -> Int -> V.Vector a -> V.Vector (V.Vector a) chunkAlongV a b l = only (while dropAlong) where only = V.map (V.take a) while = V.takeWhile (\x -> V.length x >= a) dropAlong = V.scanl (\x _y -> V.drop b x) l (V.fromList [1..]) -- | TODO Inverse of chunk ? unchunkAlong ? -- unchunkAlong :: Int -> Int -> [[a]] -> [a] -- unchunkAlong = undefined -- splitAlong [2,3,4] ("helloworld" :: [Char]) == ["he", "llo", "worl", "d"] splitAlong :: [Int] -> [Char] -> [[Char]] splitAlong _ [] = [] -- No list? done splitAlong [] xs = [xs] -- No place to split at? Return the remainder splitAlong (x:xs) ys = take x ys : splitAlong xs (drop x ys) -- take until our split spot, recurse with next split spot and list remainder takeWhileM :: (Monad m) => (a -> Bool) -> [m a] -> m [a] takeWhileM _ [] = return [] takeWhileM p (a:as) = do v <- a if p v then do vs <- takeWhileM p as return (v:vs) else return [] -- SUMS -- To select the right algorithme according to the type: -- https://github.com/mikeizbicki/ifcxt sumSimple :: Num a => [a] -> a sumSimple = L.foldl' (+) 0 -- | https://en.wikipedia.org/wiki/Kahan_summation_algorithm sumKahan :: Num a => [a] -> a sumKahan = snd . L.foldl' go (0,0) where go (c,t) i = ((t'-t)-y,t') where y = i-c t' = t+y -- | compute part of the dict count2map :: (Ord k, Foldable t) => t k -> Map k Double count2map xs = M.map (/ (fromIntegral (length xs))) (count2map' xs) -- | insert in a dict count2map' :: (Ord k, Foldable t) => t k -> Map k Double count2map' xs = L.foldl' (\x y -> insertWith (+) y 1 x) M.empty xs trunc :: (RealFrac a, Integral c, Integral b) => b -> a -> c trunc n = truncate . (* 10^n) trunc' :: Int -> Double -> Double trunc' n x = fromIntegral $ truncate $ (x * 10^n) ------------------------------------------------------------------------ bool2num :: Num a => Bool -> a bool2num True = 1 bool2num False = 0 bool2double :: Bool -> Double bool2double = bool2num bool2int :: Bool -> Int bool2int = bool2num ------------------------------------------------------------------------ -- Normalizing && scaling data scale :: [Double] -> [Double] scale = scaleMinMax scaleMinMax :: [Double] -> [Double] scaleMinMax xs = map (\x -> (x - mi / (ma - mi + 1) )) xs' where ma = maximum xs' mi = minimum xs' xs' = map abs xs scaleNormalize :: [Double] -> [Double] scaleNormalize xs = map (\x -> (x - v / (m + 1))) xs' where v = variance xs' m = mean xs' xs' = map abs xs normalize :: [Double] -> [Double] normalize as = normalizeWith identity as normalizeWith :: Fractional b => (a -> b) -> [a] -> [b] normalizeWith extract bs = map (\x -> x/(sum bs')) bs' where bs' = map extract bs -- Zip functions to add zipFst :: ([b] -> [a]) -> [b] -> [(a, b)] zipFst f xs = zip (f xs) xs zipSnd :: ([a] -> [b]) -> [a] -> [(a, b)] zipSnd f xs = zip xs (f xs) -- | maximumWith maximumWith :: (Ord a1, Foldable t) => (a2 -> a1) -> t a2 -> a2 maximumWith f = L.maximumBy (compare `on` f) -- | To get all combinations of a list with no -- repetition and apply a function to the resulting list of pairs listToCombi :: forall a b. (a -> b) -> [a] -> [(b,b)] listToCombi f l = [ (f x, f y) | (x:rest) <- L.tails l, y <- rest ] ------------------------------------------------------------------------ -- Empty List Sugar Error Handling -- TODO add Garg Monad Errors listSafe1 :: Text -> ([a] -> Maybe a) -> Text -> [a] -> a listSafe1 s f e xs = maybe (panic $ h <> e) identity (f xs) where h = "[ERR][Gargantext] Empty list for " <> s <> " in " head' :: Text -> [a] -> a head' = listSafe1 "head" headMay last' :: Text -> [a] -> a last' = listSafe1 "last" lastMay ------------------------------------------------------------------------ listSafeN :: Text -> ([a] -> Maybe [a]) -> Text -> [a] -> [a] listSafeN s f e xs = maybe (panic $ h <> e) identity (f xs) where h = "[ERR][Gargantext] Empty list for " <> s <> " in " tail' :: Text -> [a] -> [a] tail' = listSafeN "tail" tailMay init' :: Text -> [a] -> [a] init' = listSafeN "init" initMay ------------------------------------------------------------------------ --- Some Statistics sugar functions -- Exponential Average eavg :: [Double] -> Double eavg (x:xs) = a*x + (1-a)*(eavg xs) where a = 0.70 eavg [] = 0 -- Simple Average mean :: Fractional a => [a] -> a mean xs = sum xs / fromIntegral (length xs) sumMaybe :: Num a => [Maybe a] -> Maybe a sumMaybe = fmap sum . M.sequence variance :: Floating a => [a] -> a variance xs = sum ys / (fromIntegral (length xs) - 1) where m = mean xs ys = map (\x -> (x - m) ** 2) xs deviation :: Floating a => [a] -> a deviation = sqrt . variance movingAverage :: (Eq b, Fractional b) => Int -> [b] -> [b] movingAverage steps xs = map mean $ chunkAlong steps 1 xs ma :: [Double] -> [Double] ma = movingAverage 3 ----------------------------------------------------------------------- fib :: Int -> Int fib 0 = 0 fib 1 = 1 fib n = fib (n-1) + fib (n-2) ----------------------------------------------------------------------- -- Memory Optimization inMVarIO :: MonadIO m => m b -> m b inMVarIO f = do mVar <- liftIO newEmptyMVar zVar <- f _ <- liftIO $ forkIO $ putMVar mVar zVar liftIO $ takeMVar mVar inMVar :: b -> IO b inMVar f = do mVar <- newEmptyMVar let zVar = f _ <- liftIO $ forkIO $ putMVar mVar zVar liftIO $ takeMVar mVar