{-| Module : Gargantext.Graph.Distances.Matrix Description : Copyright : (c) CNRS, 2017-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX This module aims at implementig distances of terms context by context is the same referential of corpus. Implementation use Accelerate library which enables GPU and CPU computation: * Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover. [Accelerating Haskell Array Codes with Multicore GPUs][CKLM+11]. In _DAMP '11: Declarative Aspects of Multicore Programming_, ACM, 2011. * Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and Ben Lippmeier. [Optimising Purely Functional GPU Programs][MCKL13]. In _ICFP '13: The 18th ACM SIGPLAN International Conference on Functional Programming_, ACM, 2013. * Robert Clifton-Everest, Trevor L. McDonell, Manuel M. T. Chakravarty, and Gabriele Keller. [Embedding Foreign Code][CMCK14]. In _PADL '14: The 16th International Symposium on Practical Aspects of Declarative Languages_, Springer-Verlag, LNCS, 2014. * Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, and Ryan R. Newton. [Type-safe Runtime Code Generation: Accelerate to LLVM][MCGN15]. In _Haskell '15: The 8th ACM SIGPLAN Symposium on Haskell_, ACM, 2015. -} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE ScopedTypeVariables #-} module Gargantext.Viz.Graph.Distances.Matrice where import Data.Array.Accelerate import Data.Array.Accelerate.Interpreter (run) import qualified Gargantext.Prelude as P ----------------------------------------------------------------------- -- | Define a vector -- -- >>> vector 3 -- Vector (Z :. 3) [0,1,2] vector :: Int -> (Array (Z :. Int) Int) vector n = fromList (Z :. n) [0..n] -- | Define a matrix -- -- >>> matrix 3 ([1..] :: [Double]) -- Matrix (Z :. 3 :. 3) -- [ 1.0, 2.0, 3.0, -- 4.0, 5.0, 6.0, -- 7.0, 8.0, 9.0] matrix :: Elt c => Int -> [c] -> Matrix c matrix n l = fromList (Z :. n :. n) l -- | Two ways to get the rank (as documentation) -- -- >>> rank (matrix 3 ([1..] :: [Int])) -- 2 rank :: (Matrix a) -> Int rank m = arrayRank $ arrayShape m ----------------------------------------------------------------------- -- | Dimension of a square Matrix -- How to force use with SquareMatrix ? type Dim = Int -- | Get Dimension of a square Matrix -- -- >>> dim (matrix 3 ([1..] :: [Int])) -- 3 dim :: Matrix a -> Dim dim m = n where Z :. _ :. n = arrayShape m -- indexTail (arrayShape m) ----------------------------------------------------------------------- -- | Sum of a Matrix by Column -- -- >>> run $ matSum 3 (use $ matrix 3 [1..]) -- Matrix (Z :. 3 :. 3) -- [ 12.0, 15.0, 18.0, -- 12.0, 15.0, 18.0, -- 12.0, 15.0, 18.0] matSum :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double) matSum r mat = replicate (constant (Z :. (r :: Int) :. All)) $ sum $ transpose mat -- | Proba computes de probability matrix: all cells divided by thee sum of its column -- if you need get the probability on the lines, just transpose it -- -- >>> run $ matProba 3 (use $ matrix 3 [1..]) -- Matrix (Z :. 3 :. 3) -- [ 8.333333333333333e-2, 0.13333333333333333, 0.16666666666666666, -- 0.3333333333333333, 0.3333333333333333, 0.3333333333333333, -- 0.5833333333333334, 0.5333333333333333, 0.5] matProba :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double) matProba r mat = zipWith (/) mat (matSum r mat) -- | Diagonal of the matrix -- -- >>> run $ diag (use $ matrix 3 ([1..] :: [Int])) -- Vector (Z :. 3) [1,5,9] diag :: Elt e => Acc (Matrix e) -> Acc (Vector e) diag m = backpermute (indexTail (shape m)) (lift1 (\(Z :. x) -> (Z :. x :. (x :: Exp Int)))) m -- | Divide by the Diagonal of the matrix -- -- >>> run $ divByDiag 3 (use $ matrix 3 ([1..] :: [Double])) -- Matrix (Z :. 3 :. 3) -- [ 1.0, 0.4, 0.3333333333333333, -- 4.0, 1.0, 0.6666666666666666, -- 7.0, 1.6, 1.0] divByDiag :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double) divByDiag d mat = zipWith (/) mat (replicate (constant (Z :. (d :: Int) :. All)) $ diag mat) ----------------------------------------------------------------------- -- | Filters the matrix with the minimum of maximums -- -- >>> run $ matMiniMax $ use $ matrix 3 [1..] -- Matrix (Z :. 3 :. 3) -- [ 0.0, 4.0, 7.0, -- 0.0, 5.0, 8.0, -- 0.0, 6.0, 9.0] matMiniMax :: Acc (Matrix Double) -> Acc (Matrix Double) matMiniMax m = map (\x -> ifThenElse (x > miniMax') x 0) (transpose m) where miniMax' = (the $ minimum $ maximum m) -- | Filters the matrix with a constant -- -- >>> run $ matFilter 5 $ use $ matrix 3 [1..] -- Matrix (Z :. 3 :. 3) -- [ 0.0, 0.0, 7.0, -- 0.0, 0.0, 8.0, -- 0.0, 6.0, 9.0] matFilter :: Double -> Acc (Matrix Double) -> Acc (Matrix Double) matFilter t m = map (\x -> ifThenElse (x > (constant t)) x 0) (transpose m) ----------------------------------------------------------------------- -- * Measures of proximity ----------------------------------------------------------------------- -- ** Conditional distance -- *** Conditional distance (basic) -- | Conditional distance (basic version) -- -- 2 main measures are actually implemented in order to compute the -- proximity of two terms: conditional and distributional -- -- Conditional measure is an absolute measure which reflects -- interactions of 2 terms in the corpus. measureConditional :: Matrix Int -> Matrix Double --measureConditional m = run (matMiniMax $ matProba (dim m) $ map fromIntegral $ use m) measureConditional m = run (matProba (dim m) $ map fromIntegral $ use m) -- *** Conditional distance (advanced) -- | Conditional distance (advanced version) -- -- The conditional measure P(i|j) of 2 terms @i@ and @j@, also called -- "confidence" , is the maximum probability between @i@ and @j@ to see -- @i@ in the same context of @j@ knowing @j@. -- -- If N(i) (resp. N(j)) is the number of occurrences of @i@ (resp. @j@) -- in the corpus and _[n_{ij}\] the number of its occurrences we get: -- -- \[P_c=max(\frac{n_i}{n_{ij}},\frac{n_j}{n_{ij}} )\] conditional' :: Matrix Int -> (Matrix InclusionExclusion, Matrix SpecificityGenericity) conditional' m = (run $ ie $ map fromIntegral $ use m, run $ sg $ map fromIntegral $ use m) where ie :: Acc (Matrix Double) -> Acc (Matrix Double) ie mat = map (\x -> x / (2*n-1)) $ zipWith (+) (xs mat) (ys mat) sg :: Acc (Matrix Double) -> Acc (Matrix Double) sg mat = map (\x -> x / (2*n-1)) $ zipWith (-) (xs mat) (ys mat) n :: Exp Double n = P.fromIntegral r r :: Dim r = dim m xs :: Acc (Matrix Double) -> Acc (Matrix Double) xs mat = zipWith (-) (matSum r $ matProba r mat) (matProba r mat) ys :: Acc (Matrix Double) -> Acc (Matrix Double) ys mat = zipWith (-) (matSum r $ transpose $ matProba r mat) (matProba r mat) ----------------------------------------------------------------------- -- ** Distributional Distance -- | Distributional Distance Measure -- -- Distributional measure is a relative measure which depends on the -- selected list, it represents structural equivalence. -- -- The distributional measure \[P_c\] of @i@ and @j@ terms is: \[ -- S_{MI} = \frac {\sum_{k \neq i,j ; MI_{ik} >0}^{} \min(MI_{ik}, -- MI_{jk})}{\sum_{k \neq i,j ; MI_{ik}}^{}} \] -- -- Mutual information -- \[S{MI}({i},{j}) = \log(\frac{C{ij}}{E{ij}})\] -- -- Number of cooccurrences of @i@ and @j@ in the same context of text -- \[C{ij}\] -- -- The expected value of the cooccurrences -- \[E_{ij} = \frac {S_{i} S_{j}} {N}\] -- -- Total cooccurrences of @i@ term -- \[N_{i} = \sum_{i}^{} S_{i}\] distributional :: Matrix Int -> Matrix Double distributional m = run $ matMiniMax $ ri (map fromIntegral $ use m) where -- filter m = zipWith (\a b -> max a b) m (transpose m) ri mat = zipWith (/) mat1 mat2 where mat1 = matSum n $ zipWith min (mi mat) (mi $ transpose mat) mat2 = matSum n mat mi m' = zipWith (\a b -> max (log $ a/b) 0) m' $ zipWith (/) (crossProduct m') (total m') total m'' = replicate (constant (Z :. n :. n)) $ fold (+) 0 $ fold (+) 0 m'' n = dim m crossProduct m''' = zipWith (*) (cross m''' ) (cross (transpose m''')) cross mat = zipWith (-) (matSum n mat) (mat) ----------------------------------------------------------------------- ----------------------------------------------------------------------- -- * Specificity and Genericity {- | Metric Specificity and genericity: select terms - let N termes and occurrences of i \[N{i}\] - Cooccurrences of i and j \[N{ij}\] - Probability to get i given j : \[P(i|j)=N{ij}/N{j}\] - Genericity of i \[Gen(i) = \frac{\sum_{j \neq i,j} P(i|j)}{N-1}\] - Specificity of j \[Spec(i) = \frac{\sum_{j \neq i,j} P(j|i)}{N-1}\] - \[Inclusion (i) = Gen(i) + Spec(i)\) - \[GenericityScore = Gen(i)- Spec(i)\] - References: Science mapping with asymmetrical paradigmatic proximity Jean-Philippe Cointet (CREA, TSV), David Chavalarias (CREA) (Submitted on 15 Mar 2008), Networks and Heterogeneous Media 3, 2 (2008) 267 - 276, arXiv:0803.2315 [cs.OH] -} type InclusionExclusion = Double type SpecificityGenericity = Double data SquareMatrix = SymetricMatrix | NonSymetricMatrix type SymetricMatrix = Matrix type NonSymetricMatrix = Matrix incExcSpeGen :: Matrix Int -> (Vector InclusionExclusion, Vector SpecificityGenericity) incExcSpeGen m = (run' inclusionExclusion m, run' specificityGenericity m) where run' fun mat = run $ fun $ map fromIntegral $ use mat -- | Inclusion (i) = Gen(i)+Spec(i) inclusionExclusion :: Acc (Matrix Double) -> Acc (Vector Double) inclusionExclusion mat = zipWith (+) (pV mat) (pH mat) -- | Genericity score = Gen(i)- Spec(i) specificityGenericity :: Acc (Matrix Double) -> Acc (Vector Double) specificityGenericity mat = zipWith (-) (pV mat) (pH mat) -- | Gen(i) : 1/(N-1)*Sum(j!=i, P(i|j)) : Genericity of i pV :: Acc (Matrix Double) -> Acc (Vector Double) pV mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ij mat -- | Spec(i) : 1/(N-1)*Sum(j!=i, P(j|i)) : Specificity of j pH :: Acc (Matrix Double) -> Acc (Vector Double) pH mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ji mat cardN :: Exp Double cardN = constant (P.fromIntegral (dim m) :: Double) -- | P(i|j) = Nij /N(jj) Probability to get i given j --p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (SymetricMatrix e) -> Acc (Matrix e) p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (Matrix e) -> Acc (Matrix e) p_ij m = zipWith (/) m (n_jj m) where n_jj :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e) n_jj myMat' = backpermute (shape m) (lift1 ( \(Z :. (_ :: Exp Int) :. (j:: Exp Int)) -> (Z :. j :. j) ) ) myMat' -- | P(j|i) = Nij /N(ii) Probability to get i given j -- to test p_ji :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e) p_ji = transpose . p_ij -- | Step to ckeck the result in visual/qualitative tests incExcSpeGen_proba :: Matrix Int -> Matrix Double incExcSpeGen_proba m = run' pro m where run' fun mat = run $ fun $ map fromIntegral $ use mat pro mat = p_ji mat {- -- | Hypothesis to test maybe later (or not) -- TODO ask accelerate for instances to ease such writtings: p_ :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e) p_ m = zipWith (/) m (n_ m) where n_ :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e) n_ m = backpermute (shape m) (lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int)) -> (ifThenElse (i < j) (lift (Z :. j :. j)) (lift (Z :. i :. i)) :: Exp DIM2) ) ) m -} -- * For Tests (to be removed) -- | Test perfermance with this matrix -- TODO : add this in a benchmark folder distriTest :: Matrix Double distriTest = distributional $ matrix 100 [1..] -----------------------------------------------------------------------