{-| Module : Gargantext.Text.Metrics Description : All parsers of Gargantext in one file. Copyright : (c) CNRS, 2017 - present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX Mainly reexport functions in @Data.Text.Metrics@ TODO noApax :: Ord a => Map a Occ -> Map a Occ noApax m = M.filter (>1) m -} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE OverloadedStrings #-} module Gargantext.Text.Metrics where import Data.Text (Text, pack) import Data.Map (Map) import qualified Data.List as L import qualified Data.Map as M import qualified Data.Set as S import qualified Data.Text as T import qualified Data.Vector as V import qualified Data.Vector.Unboxed as VU import Data.Tuple.Extra (both) --import GHC.Real (Ratio) --import qualified Data.Text.Metrics as DTM import Data.Array.Accelerate (toList) import Math.KMeans (kmeans, euclidSq, elements) import Gargantext.Prelude import Gargantext.Text.Metrics.Count (occurrences, cooc) import Gargantext.Text.Terms (TermType(MonoMulti), terms) import Gargantext.Core (Lang(EN)) import Gargantext.Core.Types (Terms(..)) import Gargantext.Text.Context (splitBy, SplitContext(Sentences)) import Gargantext.Viz.Graph.Distances.Matrice import Gargantext.Viz.Graph.Index import qualified Data.Array.Accelerate.Interpreter as DAA import qualified Data.Array.Accelerate as DAA -- import Data.Array.Accelerate ((:.)(..), Z(..)) import GHC.Real (round) import Debug.Trace import Prelude (seq) data MapListSize = MapListSize Int data InclusionSize = InclusionSize Int data SampleBins = SampleBins Double data Clusters = Clusters Int data DefaultValue = DefaultValue Int data FilterConfig = FilterConfig { fc_mapListSize :: MapListSize , fc_inclusionSize :: InclusionSize , fc_sampleBins :: SampleBins , fc_clusters :: Clusters , fc_defaultValue :: DefaultValue } filterCooc :: Ord t => FilterConfig -> Map (t, t) Int -> Map (t, t) Int filterCooc fc cc = (filterCooc' fc) ts cc where ts = map _scored_terms $ takeSome fc $ coocScored cc filterCooc' :: Ord t => FilterConfig -> [t] -> Map (t, t) Int -> Map (t, t) Int filterCooc' (FilterConfig _ _ _ _ (DefaultValue dv)) ts m = -- trace ("coocScored " <> show (length ts)) $ foldl' (\m' k -> M.insert k (maybe dv identity $ M.lookup k m) m') M.empty selection where selection = [(x,y) | x <- ts, y <- ts, x > y] -- | Map list creation -- Kmeans split into (Clusters::Int) main clusters with Inclusion/Exclusion (relevance score) -- Sample the main cluster ordered by specificity/genericity in (SampleBins::Double) parts -- each parts is then ordered by Inclusion/Exclusion -- take n scored terms in each parts where n * SampleBins = MapListSize. takeSome :: Ord t => FilterConfig -> [Scored t] -> [Scored t] takeSome (FilterConfig (MapListSize l) (InclusionSize l') (SampleBins s) (Clusters k) _) scores = L.take l $ takeSample n m $ L.take l' $ L.reverse $ L.sortOn _scored_incExc scores -- $ splitKmeans k scores where -- TODO: benchmark with accelerate-example kmeans version splitKmeans x xs = L.concat $ map elements $ V.take (k-1) $ kmeans (\i -> VU.fromList ([(_scored_incExc i :: Double)])) euclidSq x xs n = round ((fromIntegral l)/s) m = round $ (fromIntegral $ length scores) / (s) takeSample n m xs = -- trace ("splitKmeans " <> show (length xs)) $ L.concat $ map (L.take n) $ map (reverse . (L.sortOn _scored_incExc)) -- TODO use kmeans s instead of splitEvery -- in order to split in s heteregenous parts -- without homogeneous order hypothesis $ splitEvery m $ L.reverse $ L.sortOn _scored_speGen xs data Scored t = Scored { _scored_terms :: !t , _scored_incExc :: !InclusionExclusion , _scored_speGen :: !SpecificityGenericity } deriving (Show) coocScored :: Ord t => Map (t,t) Int -> [Scored t] coocScored m = zipWith (\(i,t) (inc,spe) -> Scored t inc spe) (M.toList fi) scores where (ti,fi) = createIndices m (is, ss) = incExcSpeGen $ cooc2mat ti m scores = DAA.toList $ DAA.run $ DAA.zip (DAA.use is) (DAA.use ss) incExcSpeGen_sorted :: Ord t => Map (t,t) Int -> ([(t,Double)],[(t,Double)]) incExcSpeGen_sorted m = both ordonne (incExcSpeGen $ cooc2mat ti m) where (ti,fi) = createIndices m ordonne x = L.reverse $ L.sortOn snd $ zip (map snd $ M.toList fi) (toList x) metrics_text :: Text metrics_text = T.intercalate " " metrics_sentences metrics_sentences' :: [Text] metrics_sentences' = splitBy (Sentences 0) metrics_text -- | Sentences metrics_sentences :: [Text] metrics_sentences = [ "There is a table with a glass of wine and a spoon." , "I can see the glass on the table." , "There was only a spoon on that table." , "The glass just fall from the table, pouring wine everywhere." , "I wish the glass did not contain wine." ] metrics_sentences_Test = metrics_sentences == metrics_sentences' -- | Terms reordered to visually check occurrences -- >>> {- [ [["table"],["glass"],["wine"],["spoon"]] , [["glass"],["table"]] , [["spoon"],["table"]] , [["glass"],["table"],["wine"]] , [["glass"],["wine"]] ] -} metrics_terms :: IO [[Terms]] metrics_terms = mapM (terms (MonoMulti EN)) $ splitBy (Sentences 0) metrics_text -- | Occurrences {- fromList [ (fromList ["table"] ,fromList [(["table"] , 3 )])] , (fromList ["object"],fromList [(["object"], 3 )]) , (fromList ["glas"] ,fromList [(["glas"] , 2 )]) , (fromList ["spoon"] ,fromList [(["spoon"] , 2 )]) -} metrics_occ = occurrences <$> L.concat <$> metrics_terms {- -- fromList [((["glas"],["object"]),6) ,((["glas"],["spoon"]),4) ,((["glas"],["table"]),6),((["object"],["spoon"]),6),((["object"],["table"]),9),((["spoon"],["table"]),6)] -} metrics_cooc = cooc <$> metrics_terms metrics_cooc_mat = do m <- metrics_cooc let (ti,_) = createIndices m let mat_cooc = cooc2mat ti m pure ( ti , mat_cooc , incExcSpeGen_proba mat_cooc , incExcSpeGen mat_cooc ) metrics_incExcSpeGen = incExcSpeGen_sorted <$> metrics_cooc