{-| Module : Gargantext.Graph.Distances.Conditional Description : Copyright : (c) CNRS, 2017-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX Motivation and definition of the @Conditional@ distance. -} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE Strict #-} module Gargantext.Graph.Distances.Conditional where import Data.Matrix hiding (identity) import Data.String.Conversions (ConvertibleStrings(..)) import Data.List (concat, sortOn) import qualified Data.List as L import Data.Map (Map) import qualified Data.Map as M import Data.Set (Set) import qualified Data.Set as S import Data.Vector (Vector) import qualified Data.Vector as V import Gargantext.Prelude import Gargantext.Graph.Utils ------------------------------------------------------------------------ ------------------------------------------------------- conditional :: (Num a, Fractional a, Ord a) => Matrix a -> Matrix a conditional m = x' -- filter (threshold m') m' where ------------------------------------------------------------------------ -- | Main Operations -- x' = x / (sum Col x) x' = proba Col m ------------------------------------------------------------------------ -- xs = (sum Col x') - x' xs = distFromSum Col x' -- ys = (sum Row x') - x' ys = distFromSum Row x' ------------------------------------------------------------------------ -- | Top included or excluded ie = opWith (+) xs ys -- ie = ( xs + ys) / (2 * (x.shape[0] - 1)) -- | Top specific or generic sg = opWith (-) xs ys -- sg = ( xs - ys) / (2 * (x.shape[0] - 1)) nodes_kept :: [Int] nodes_kept = take k' $ S.toList $ foldl' (\s (n1,n2) -> insert [n1,n2] s) S.empty $ map fst $ nodes_included k <> nodes_specific k nodes_included n = take n $ sortOn snd $ toListsWithIndex ie nodes_specific m = take m $ sortOn snd $ toListsWithIndex sg insert as s = foldl' (\s' a -> S.insert a s') s as k' = 2*k k = 10 dico_nodes :: Map Int Int dico_nodes = M.fromList $ zip [1..] nodes_kept dico_nodes_rev = M.fromList $ zip nodes_kept [1..] m' = matrix (length nodes_kept) (length nodes_kept) (\(i,j) -> getElem ((M.!) dico_nodes i) ((M.!) dico_nodes j) x') threshold m = V.minimum $ V.map (\cId -> V.maximum $ getCol cId m) (V.enumFromTo 1 (nOf Col m)) filter t m = mapAll (\x -> filter' t x) m where filter' t x = case (x >= t) of True -> x False -> 0 ------------------------------------------------------------------------ ------------------------------------------------------------------------ -- | Main Functions -- Compute the probability from axis -- x' = x / (sum Col x) proba :: (Num a, Fractional a) => Axis -> Matrix a -> Matrix a proba a m = mapOn a (\c x -> x / V.sum (axis a c m)) m --------------------------------------------------------------- -- | Compute a distance from axis -- xs = (sum Col x') - x' distFromSum :: (Num a, Fractional a) => Axis -> Matrix a -> Matrix a distFromSum a m = mapOn a (\c x -> V.sum (axis a c m) - x) m --------------------------------------------------------------- --------------------------------------------------------------- -- | To compute included/excluded or specific/generic scores opWith :: (Fractional a1, Num a1) => (Matrix a2 -> t -> Matrix a1) -> Matrix a2 -> t -> Matrix a1 opWith op xs ys = mapAll (\x -> x / (2*n -1)) (xs `op` ys) where n = fromIntegral $ nOf Col xs ---------------------------------------------------------------