{-| Module : Gargantext.Text.List.Learn Description : Learn to make lists Copyright : (c) CNRS, 2018-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX CSV parser for Gargantext corpus files. -} {-# OPTIONS_GHC -fno-warn-orphans #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE OverloadedStrings #-} module Gargantext.Text.List.Learn where import Control.Monad.Reader (MonadReader) -- TODO remvoe this deps import Gargantext.API.Admin.Settings import Data.Map (Map) import Data.Maybe (maybe) import Gargantext.Core.Types.Main (ListType(..), listTypeId, fromListTypeId) import Gargantext.Prelude import Gargantext.Prelude.Utils import Gargantext.Text.Metrics.Count (occurrencesWith) import qualified Data.IntMap as IntMap import qualified Data.List as List import qualified Data.Map as Map import qualified Data.SVM as SVM import qualified Data.Vector as Vec ------------------------------------------------------------------------ train :: Double -> Double -> SVM.Problem -> IO SVM.Model train x y = (SVM.train (SVM.CSvc x) (SVM.RBF y)) predict :: SVM.Model -> [Vec.Vector Double] -> IO [Double] predict m vs = mapM (predict' m) vs where predict' m' vs' = SVM.predict m' (IntMap.fromList $ (zip [1..]) $ Vec.toList vs') ------------------------------------------------------------------------ trainList :: Double -> Double -> Map ListType [Vec.Vector Double] -> IO SVM.Model trainList x y = (train x y) . trainList' where trainList' :: Map ListType [Vec.Vector Double] -> SVM.Problem trainList' = mapVec2problem . (Map.mapKeys (fromIntegral . listTypeId)) mapVec2problem :: Map Double [Vec.Vector Double] -> SVM.Problem mapVec2problem = List.concat . (map (\(a,as) -> zip (repeat a) as)) . Map.toList . (Map.map vecs2maps) vecs2maps :: [Vec.Vector Double] -> [IntMap.IntMap Double] vecs2maps = map (IntMap.fromList . (zip [1..]) . Vec.toList) predictList :: Model -> [Vec.Vector Double] -> IO [Maybe ListType] predictList (ModelSVM m _ _) vs = map (fromListTypeId . round) <$> predict m vs ------------------------------------------------------------------------ data Model = ModelSVM { modelSVM :: SVM.Model , param1 :: Maybe Double , param2 :: Maybe Double } --{- instance SaveFile Model where saveFile' fp (ModelSVM m _ _) = SVM.saveModel m fp instance ReadFile Model where readFile' fp = do m <- SVM.loadModel fp pure $ ModelSVM m Nothing Nothing --} ------------------------------------------------------------------------ -- | TODO -- shuffle list -- split list : train / test -- grid parameters on best result on test type Train = Map ListType [Vec.Vector Double] type Tests = Map ListType [Vec.Vector Double] type Score = Double type Param = Double grid :: (MonadReader env m, MonadBase IO m, HasSettings env) => Param -> Param -> Train -> [Tests] -> m (Maybe Model) grid _ _ _ [] = panic "Gargantext.Text.List.Learn.grid : empty test data" grid s e tr te = do let grid' :: (MonadReader env m, MonadBase IO m, HasSettings env) => Double -> Double -> Train -> [Tests] -> m (Score, Model) grid' x y tr' te' = do model'' <- liftBase $ trainList x y tr' let model' = ModelSVM model'' (Just x) (Just y) score' :: [(ListType, Maybe ListType)] -> Map (Maybe Bool) Int score' = occurrencesWith (\(a,b) -> (==) <$> Just a <*> b) score'' :: Map (Maybe Bool) Int -> Double score'' m'' = maybe 0 (\t -> (fromIntegral t)/total) (Map.lookup (Just True) m'') where total = fromIntegral $ foldl (+) 0 $ Map.elems m'' getScore m t = do let (res, toGuess) = List.unzip $ List.concat $ map (\(k,vs) -> zip (repeat k) vs) $ Map.toList t res' <- liftBase $ predictList m toGuess pure $ score'' $ score' $ List.zip res res' score <- mapM (getScore model') te' pure (mean score, model') r <- head . List.reverse . (List.sortOn fst) <$> mapM (\(x,y) -> grid' x y tr te) [(x,y) | x <- [s..e], y <- [s..e]] printDebug "GRID SEARCH" (map fst r) --printDebug "file" fp --fp <- saveFile (ModelSVM model') --save best result pure $ snd <$> r