{-| Module : Gargantext.Core.Viz.Graph.Tools Description : Tools to build Graph Copyright : (c) CNRS, 2017-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX -} {-# LANGUAGE ScopedTypeVariables #-} module Gargantext.Core.Viz.Graph.Tools where import Data.Aeson import Data.HashMap.Strict (HashMap) import Data.Map (Map) import Data.Maybe (fromMaybe) import Data.Swagger hiding (items) import GHC.Float (sin, cos) import GHC.Generics (Generic) import Gargantext.API.Ngrams.Types (NgramsTerm(..)) import Gargantext.Core.Methods.Distances (Distance(..), measure) import Gargantext.Core.Methods.Distances.Conditional (conditional) import Gargantext.Core.Methods.Graph.BAC.Proxemy (confluence) import Gargantext.Core.Statistics import Gargantext.Core.Viz.Graph import Gargantext.Core.Viz.Graph.Bridgeness (bridgeness, Partitions, ToComId(..)) import Gargantext.Core.Viz.Graph.Index (createIndices, toIndex, map2mat, mat2map, Index, MatrixShape(..)) import Gargantext.Core.Viz.Graph.Tools.IGraph (mkGraphUfromEdges, spinglass) import Gargantext.Core.Viz.Graph.Utils (edgesFilter) import Gargantext.Prelude import Graph.Types (ClusterNode) import IGraph.Random -- (Gen(..)) import Test.QuickCheck (elements) import Test.QuickCheck.Arbitrary import qualified Data.HashMap.Strict as HashMap import qualified Data.List as List import qualified Data.Map as Map import qualified Data.Set as Set import qualified Data.Vector.Storable as Vec import qualified Graph.BAC.ProxemyOptim as BAC import qualified IGraph as Igraph import qualified IGraph.Algorithms.Layout as Layout data PartitionMethod = Spinglass | Confluence deriving (Generic, Eq, Ord, Enum, Bounded, Show) instance FromJSON PartitionMethod instance ToJSON PartitionMethod instance ToSchema PartitionMethod instance Arbitrary PartitionMethod where arbitrary = elements [ minBound .. maxBound ] ------------------------------------------------------------- defaultClustering :: Map (Int, Int) Double -> IO [ClusterNode] -- defaultClustering x = pure $ BAC.defaultClustering x defaultClustering x = spinglass 1 x ------------------------------------------------------------- type Threshold = Double cooc2graph' :: Ord t => Distance -> Double -> Map (t, t) Int -> Map (Index, Index) Double cooc2graph' distance threshold myCooc = Map.filter (> threshold) $ mat2map $ measure distance $ case distance of Conditional -> map2mat Triangle 0 tiSize Distributional -> map2mat Square 0 tiSize $ Map.filter (> 1) myCooc' where (ti, _) = createIndices myCooc tiSize = Map.size ti myCooc' = toIndex ti myCooc -- coocurrences graph computation cooc2graphWith :: PartitionMethod -> Distance -> Threshold -> HashMap (NgramsTerm, NgramsTerm) Int -> IO Graph cooc2graphWith Spinglass = cooc2graphWith' (spinglass 1) cooc2graphWith Confluence= cooc2graphWith' (\x -> pure $ BAC.defaultClustering x) cooc2graphWith' :: ToComId a => Partitions a -> Distance -> Threshold -> HashMap (NgramsTerm, NgramsTerm) Int -> IO Graph cooc2graphWith' doPartitions distance threshold myCooc = do let (distanceMap, diag, ti) = doDistanceMap distance threshold myCooc --{- -- Debug saveAsFileDebug "/tmp/distanceMap" distanceMap saveAsFileDebug "/tmp/distanceMap.keys" (List.length $ Map.keys distanceMap) -- printDebug "similarities" similarities --} partitions <- if (Map.size distanceMap > 0) then doPartitions distanceMap else panic "Text.Flow: DistanceMap is empty" let nodesApprox :: Int nodesApprox = n' where (as, bs) = List.unzip $ Map.keys distanceMap n' = Set.size $ Set.fromList $ as <> bs bridgeness' = bridgeness (fromIntegral nodesApprox) partitions distanceMap confluence' = confluence (Map.keys bridgeness') 3 True False pure $ data2graph ti diag bridgeness' confluence' partitions doDistanceMap :: Distance -> Threshold -> HashMap (NgramsTerm, NgramsTerm) Int -> ( Map (Int,Int) Double , Map (Index, Index) Int , Map NgramsTerm Index ) doDistanceMap Distributional threshold myCooc = (distanceMap, toIndex ti diag, ti) where -- TODO remove below (diag, theMatrix) = Map.partitionWithKey (\(x,y) _ -> x == y) $ Map.fromList $ HashMap.toList myCooc (ti, _it) = createIndices theMatrix tiSize = Map.size ti similarities = measure Distributional $ map2mat Square 0 tiSize $ toIndex ti theMatrix links = round (let n :: Double = fromIntegral tiSize in n * (log n)^(2::Int)) distanceMap = Map.fromList $ List.take links $ List.reverse $ List.sortOn snd $ Map.toList $ edgesFilter $ Map.filter (> threshold) $ mat2map similarities doDistanceMap Conditional threshold myCooc = (distanceMap, toIndex ti myCooc', ti) where myCooc' = Map.fromList $ HashMap.toList myCooc (ti, _it) = createIndices myCooc' links = round (let n :: Double = fromIntegral (Map.size ti) in n * log n) distanceMap = toIndex ti $ Map.fromList $ List.take links $ List.sortOn snd $ HashMap.toList $ HashMap.filter (> threshold) $ conditional myCooc ---------------------------------------------------------- -- | From data to Graph type Occurrences = Int data2graph :: ToComId a => Map NgramsTerm Int -> Map (Int, Int) Occurrences -> Map (Int, Int) Double -> Map (Int, Int) Double -> [a] -> Graph data2graph labels' occurences bridge conf partitions = Graph { _graph_nodes = nodes , _graph_edges = edges , _graph_metadata = Nothing } where nodes = map (setCoord ForceAtlas labels bridge) [ (n, Node { node_size = maybe 0 identity (Map.lookup (n,n) occurences) , node_type = Terms -- or Unknown , node_id = cs (show n) , node_label = unNgramsTerm l , node_x_coord = 0 , node_y_coord = 0 , node_attributes = Attributes { clust_default = fromMaybe 0 (Map.lookup n community_id_by_node_id) } , node_children = [] } ) | (l, n) <- labels , Set.member n nodesWithScores ] edges = [ Edge { edge_source = cs (show s) , edge_target = cs (show t) , edge_weight = weight , edge_confluence = maybe 0 identity $ Map.lookup (s,t) conf , edge_id = cs (show i) } | (i, ((s,t), weight)) <- zip ([0..]::[Integer] ) $ Map.toList bridge , s /= t , weight > 0 ] community_id_by_node_id = Map.fromList $ map nodeId2comId partitions labels = Map.toList labels' nodesWithScores = Set.fromList $ List.concat $ map (\((s,t),d) -> if d > 0 && s/=t then [s,t] else []) $ Map.toList bridge ------------------------------------------------------------------------ data Layout = KamadaKawai | ACP | ForceAtlas setCoord' :: (Int -> (Double, Double)) -> (Int, Node) -> Node setCoord' f (i,n) = n { node_x_coord = x, node_y_coord = y } where (x,y) = f i -- | ACP setCoord :: Ord a => Layout -> [(a, Int)] -> Map (Int, Int) Double -> (Int, Node) -> Node setCoord l labels m (n,node) = node { node_x_coord = x , node_y_coord = y } where (x,y) = getCoord l labels m n getCoord :: Ord a => Layout -> [(a, Int)] -> Map (Int, Int) Double -> Int -> (Double, Double) getCoord KamadaKawai _ _m _n = undefined -- layout m n getCoord ForceAtlas _ _ n = (sin d, cos d) where d = fromIntegral n getCoord ACP labels m n = to2d $ maybe (panic "Graph.Tools no coordinate") identity $ Map.lookup n $ pcaReduceTo (Dimension 2) $ mapArray labels m where to2d :: Vec.Vector Double -> (Double, Double) to2d v = (x',y') where ds = take 2 $ Vec.toList v x' = head' "to2d" ds y' = last' "to2d" ds mapArray :: Ord a => [(a, Int)] -> Map (Int, Int) Double -> Map Int (Vec.Vector Double) mapArray items m' = Map.fromList [ toVec n' ns m' | n' <- ns ] where ns = map snd items toVec :: Int -> [Int] -> Map (Int,Int) Double -> (Int, Vec.Vector Double) toVec n' ns' m'' = (n', Vec.fromList $ map (\n'' -> maybe 0 identity $ Map.lookup (n',n'') m'') ns') ------------------------------------------------------------------------ -- | KamadaKawai Layout -- TODO TEST: check labels, nodeId and coordinates layout :: Map (Int, Int) Double -> Int -> Gen -> (Double, Double) layout m n gen = maybe (panic "") identity $ Map.lookup n $ coord where coord :: (Map Int (Double,Double)) coord = Map.fromList $ List.zip (Igraph.nodes g) $ (Layout.layout g p gen) --p = Layout.defaultLGL p = Layout.kamadaKawai g = mkGraphUfromEdges $ map fst $ List.filter (\e -> snd e > 0) $ Map.toList m ----------------------------------------------------------------------------- -- MISC Tools cooc2graph'' :: Ord t => Distance -> Double -> Map (t, t) Int -> Map (Index, Index) Double cooc2graph'' distance threshold myCooc = neighbourMap where (ti, _) = createIndices myCooc myCooc' = toIndex ti myCooc matCooc = map2mat Triangle 0 (Map.size ti) $ Map.filter (> 1) myCooc' distanceMat = measure distance matCooc neighbourMap = filterByNeighbours threshold $ mat2map distanceMat -- Quentin filterByNeighbours :: Double -> Map (Index, Index) Double -> Map (Index, Index) Double filterByNeighbours threshold distanceMap = filteredMap where indexes :: [Index] indexes = List.nub $ List.concat $ map (\(idx,idx') -> [idx,idx'] ) $ Map.keys distanceMap filteredMap :: Map (Index, Index) Double filteredMap = Map.fromList $ List.concat $ map (\idx -> let selected = List.reverse $ List.sortOn snd $ Map.toList $ Map.filter (> 0) $ Map.filterWithKey (\(from,_) _ -> idx == from) distanceMap in List.take (round threshold) selected ) indexes