{-| Module : Gargantext.Text.Eleve Description : Unsupervized Word segmentation Copyright : (c) CNRS, 2019-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX # Implementation of Unsupervized Word Segmentation References: - Python implementation (Korantin August, Emmanuel Navarro): [EleVe](https://github.com/kodexlab/eleve.git) - Unsupervized Word Segmentation:the case for Mandarin Chinese Pierre Magistry, Benoît Sagot, Alpage, INRIA & Univ. Paris 7, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics , pages 383–387. [PDF](https://www.aclweb.org/anthology/P12-2075) Notes for current implementation: - TODO extract longer ngrams (see paper above, viterbi algo can be used) - TODO AD TEST: prop (Node c _e f) = c == Map.size f - AD: Real ngrams extraction test from Gargantext.Text.Terms import extractTermsUnsupervised docs <- runCmdRepl $ selectDocs 1004 extractTermsUnsupervised 3 $ DT.intercalate " " $ catMaybes $ Gargantext.map _hyperdataDocument_abstract docs -} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} module Gargantext.Text.Eleve where -- import Debug.Trace (trace) -- import Debug.SimpleReflect import Control.Lens hiding (levels, children) import Control.Monad (forM_) import Data.Ord (Ord) import qualified Data.List as L import Data.Monoid import Data.Text (Text) import qualified Data.Text as T import Data.Map (Map) import Data.Maybe (fromMaybe) import qualified Data.Map as Map import Gargantext.Prelude hiding (cs) import qualified Data.Tree as Tree import Data.Tree (Tree) import qualified Prelude as P (putStrLn, logBase, isNaN, RealFloat) nan :: Floating e => e nan = 0 / 0 noNaNs :: P.RealFloat e => [e] -> [e] noNaNs = filter (not . P.isNaN) updateIfDefined :: P.RealFloat e => e -> e -> e updateIfDefined e0 e | P.isNaN e = e0 | otherwise = e sim :: Entropy e => e -> e -> Bool sim x y = x == y || (P.isNaN x && P.isNaN y) subst :: Entropy e => (e, e) -> e -> e subst (src, dst) x | sim src x = dst | otherwise = x ------------------------------------------------------------------------ type Entropy e = ( Fractional e , Floating e , P.RealFloat e , Show e -- ^ TODO: only used for debugging ) ------------------------------------------------------------------------ -- | Example and tests for development data I e = I { _info_entropy :: e , _info_entropy_var :: e , _info_autonomy :: e } instance Show e => Show (I e) where show (I e ev a) = show (e, ev, a) makeLenses ''I type ModEntropy i o e = (e -> e) -> i -> o set_autonomy :: Entropy e => ModEntropy (I e) (I e) e set_autonomy fe i = i & info_autonomy .~ fe (i ^. info_entropy_var) set_entropy_var :: Entropy e => Setter e (I e) e e set_entropy_var f e = (\ev -> I e ev nan) <$> f e data StartStop = Start | Stop deriving (Ord, Eq, Show) data Token = NonTerminal Text | Terminal StartStop deriving (Ord, Eq, Show) isTerminal :: Token -> Bool isTerminal (Terminal _) = True isTerminal (NonTerminal _) = False parseToken :: Text -> Token parseToken "" = Terminal Start parseToken "" = Terminal Stop parseToken t = NonTerminal t toToken :: [Text] -> [Token] toToken xs = Terminal Start : (NonTerminal <$> xs) <> [Terminal Stop] printToken :: Token -> Text printToken = f where f (NonTerminal x) = x f (Terminal Start) = "" f (Terminal Stop) = "" ------------------------------------------------------------------------ data Trie k e = Node { _node_count :: Int , _node_entropy :: e , _node_children :: Map k (Trie k e) } | Leaf { _node_count :: Int } deriving (Show) makeLenses ''Trie insertTrie :: Ord k => [k] -> Trie k () -> Trie k () insertTrie [] n = n { _node_count = _node_count n +1} insertTrie (x:xs) (Leaf c) = mkTrie (c+1) $ Map.singleton x $ insertTrie xs emptyTrie insertTrie (x:xs) (Node c _e children) = mkTrie (c+1) $ Map.alter f x children where f = Just . insertTrie xs . fromMaybe emptyTrie -- emptyTrie :: (Ord k, Monoid e) => Trie k e -- emptyTrie = Node 0 mempty mempty emptyTrie :: Trie k e emptyTrie = Leaf 0 mkTrie :: Monoid e => Int -> Map k (Trie k e) -> Trie k e mkTrie c children | Map.null children = Leaf c | otherwise = Node c mempty children ----------------------------- -- | Trie to Tree since Tree as nice print function toTree :: k -> Trie k e -> Tree (k,Int,Maybe e) toTree k (Leaf c) = Tree.Node (k, c, Nothing) [] toTree k (Node c e cs) = Tree.Node (k, c, Just e) (map (uncurry toTree) $ Map.toList cs) ------------------------------------------------------------------------ ------------------------------------------------------------------------ normalizeLevel :: Entropy e => e -> e -> e -> e normalizeLevel m v e = (e - m) / v {- Unused nodeChildren :: Trie k e -> Map k (Trie k e) nodeChildren (Node _ _ cs) = cs nodeChildren (Leaf _) = Map.empty -} chunkAlongEleve :: Int -> [a] -> [[a]] chunkAlongEleve n xs = L.take n <$> L.tails xs data Direction = Backward | Forward buildTrie :: Direction -> Int -> [[Token]] -> Trie Token () buildTrie d n sentences = L.foldr insertTrie emptyTrie . L.concat $ ( filter (/= [Terminal (term d)]) . chunkAlongEleve (n + 1) . order d ) <$> sentences where order Forward = identity order Backward = reverse term Forward = Stop term Backward = Start class IsTrie trie where entropyTrie :: Entropy e => (k -> Bool) -> trie k () -> trie k e nodeEntropy :: Entropy e => Getting e i e -> trie k i -> e nodeChild :: Ord k => k -> trie k e -> trie k e findTrie :: Ord k => [k] -> trie k e -> trie k e printTrie :: (Show i, Entropy e) => Getting e i e -> trie Token i -> IO () evTrie :: Entropy e => Getting e i e -> Setter i o e e -> trie k i -> trie k o normalizeEntropy :: Entropy e => Getting e i e -> ModEntropy i o e -> trie k i -> trie k o instance IsTrie Trie where entropyTrie _ (Leaf c) = Leaf c entropyTrie pred (Node c () children) = Node c e (map (entropyTrie pred) children) where children' = Map.toList children sum_count = sum $ _node_count . snd <$> children' e | sum_count == 0 = nan | otherwise = sum $ f <$> children' f (k, child) = if pred k then chc * P.logBase 2 (fromIntegral c) else - chc * P.logBase 2 chc where chc = fromIntegral (_node_count child) / fromIntegral c nodeEntropy inE (Node _ e _) = e ^. inE nodeEntropy _ (Leaf _) = nan nodeChild k (Node _ _ cs) = fromMaybe emptyTrie (Map.lookup k cs) nodeChild _ (Leaf _) = emptyTrie findTrie ks t = L.foldl (flip nodeChild) t ks printTrie inE t = do P.putStrLn . Tree.drawTree . fmap show $ toTree (NonTerminal "") t P.putStrLn " Levels:" forM_ (normalizationLevels inE t) $ \level -> P.putStrLn $ " " <> show level evTrie inE setEV = go nan where go _ (Leaf c) = Leaf c go e0 (Node c i children) = Node c (i & setEV .~ ev e0 e1) $ go e1 <$> children where e1 = i ^. inE ev 0 0 = nan ev i0 i1 = i1 - i0 normalizeEntropy inE modE t = go (modE identity) (normalizationLevels inE t) t where go _ _ (Leaf c) = Leaf c go _ [] _ = panic "normalizeEntropy' empty levels" go f ((m, v, _) : ess) (Node c i children) = Node c (f i) $ go (modE $ normalizeLevel m v) ess <$> children ------------------------------------------------------------------------ levels :: Trie k e -> [[Trie k e]] levels = L.takeWhile (not . L.null) . L.iterate (L.concatMap subForest) . pure where subForest :: Trie k e -> [Trie k e] subForest (Leaf _) = [] subForest (Node _ _ children) = Map.elems children entropyLevels :: Entropy e => Getting e i e -> Trie k i -> [[e]] entropyLevels inE = fmap (noNaNs . map (nodeEntropy inE)) . L.tail . levels normalizationLevels :: Entropy e => Getting e i e -> Trie k i -> [(e, e, Int)] normalizationLevels inE = fmap f . entropyLevels inE where f es = (mean es, deviation es, length es) ------------------------------------------------------------------------ data Tries k e = Tries { _fwd :: Trie k e , _bwd :: Trie k e } makeLenses ''Tries buildTries :: Int -> [[Token]] -> Tries Token () buildTries n sentences = Tries { _fwd = buildTrie Forward n sentences , _bwd = buildTrie Backward n sentences } instance IsTrie Tries where nodeEntropy inE (Tries f b) = mean [nodeEntropy inE f, nodeEntropy inE b] findTrie ks (Tries f b) = Tries (findTrie ks f) (findTrie (reverse ks) b) nodeChild = onTries . nodeChild entropyTrie = onTries . entropyTrie evTrie inE setEV = onTries $ evTrie inE setEV normalizeEntropy inE = onTries . normalizeEntropy inE printTrie inE (Tries f b) = do P.putStrLn "Forward:" printTrie inE f P.putStrLn "" P.putStrLn "Backward:" printTrie inE b onTries :: (Trie k i -> Trie k o) -> Tries k i -> Tries k o onTries h (Tries f b) = Tries (h f) (h b) ------------------------------------------------------------------------ split :: (IsTrie trie, Entropy e) => Lens' i e -> trie Token i -> [Token] -> [[Token]] split _ _ [] = [] split inE t (Terminal Start:xs) = split inE t xs split inE t (x0:xs0) = go [x0] xs0 where mayCons [] xss = xss mayCons xs xss = xs : xss go pref [] = [pref] go pref (Terminal Stop:_) = [pref] go _ (Terminal Start:_) = panic "split impossible" go pref (x:xs) = -- trace (show (if acc then "ACC" else "CUT", (prefx, epxt), if acc then ">" else "<=", ((pref, ept), "+", ([x], ext)))) $ if acc then go prefx xs else mayCons pref $ go [x] xs where prefx = pref <> [x] pt = findTrie pref t pxt = findTrie prefx t xt = findTrie [x] t ept = ne pt -- ^ entropy of the current prefix ext = ne xt -- ^ entropy of [x] epxt = ne pxt -- ^ entropy of the current prefix plus x acc = P.isNaN ept || P.isNaN ext || not (P.isNaN epxt) -- && (epxt > ept + ext) -- aut(["in","this","paper"]) > aut(["in","this"]) + aut(["paper"]) ne = nodeEntropy inE {- split :: Entropy e => Lens' i e -> Tries Token i -> [Token] -> [[Token]] split inE t0 ts = maximumWith (sum . map $ nodeAutonomy inE t0) (all the splits of ts) -} ------------------------------------------------------------------------ mainEleve :: Int -> [[Text]] -> [[[Text]]] mainEleve n input = map (map printToken) . split info_autonomy (t :: Tries Token (I Double)) <$> inp where inp = toToken <$> input t = normalizeEntropy info_entropy_var set_autonomy . evTrie identity set_entropy_var . entropyTrie isTerminal $ buildTries n inp --------------------------------------------- type Checks e = [(Text, Int, e, e, e, e, e, e, e, e, e)] testEleve :: e ~ Double => Bool -> Int -> [Text] -> Checks e -> IO Bool testEleve debug n output checks = do let res = map (map printToken) . split info_autonomy nt <$> inp when debug $ do P.putStrLn $ show input P.putStrLn "" printTrie info_entropy nt P.putStrLn "" P.putStrLn "Splitting:" P.putStrLn $ show res forM_ checks checker pure $ expected == res where out = T.words <$> output expected = fmap (T.splitOn "-") <$> out input = (T.splitOn "-" =<<) <$> out inp = toToken <$> input nt :: Tries Token (I Double) nt = normalizeEntropy info_entropy_var set_autonomy . evTrie identity set_entropy_var . entropyTrie isTerminal $ buildTries n inp check f msg ref my = if f ref my then P.putStrLn $ " \ESC[32mPASS\ESC[m " <> msg <> " " <> show ref else P.putStrLn $ " \ESC[31mFAIL\ESC[m " <> msg <> " ref=" <> show ref <> " my=" <> show my checker (ngram, count, entropy, ev, autonomy, fwd_entropy, fwd_ev, fwd_autonomy, bwd_entropy, bwd_ev, bwd_autonomy) = do let ns = parseToken <$> T.words ngram nt' = findTrie ns nt P.putStrLn $ " " <> T.unpack ngram <> ":" check (==) "count" count (_node_count (_fwd nt')) check sim "entropy" entropy (nodeEntropy info_entropy nt' ) check sim "ev" ev (nodeEntropy info_entropy_var nt' ) check sim "autonomy" autonomy (nodeEntropy info_autonomy nt' ) check sim "fwd_entropy" fwd_entropy (nodeEntropy info_entropy (_fwd nt')) check sim "fwd_ev" fwd_ev (nodeEntropy info_entropy_var (_fwd nt')) check sim "fwd_autonomy" fwd_autonomy (nodeEntropy info_autonomy (_fwd nt')) check sim "bwd_entropy" bwd_entropy (nodeEntropy info_entropy (_bwd nt')) check sim "bwd_ev" bwd_ev (nodeEntropy info_entropy_var (_bwd nt')) check sim "bwd_autonomy" bwd_autonomy (nodeEntropy info_autonomy (_bwd nt')) -- | TODO real data is a list of tokenized sentences example0, example1, example2, example3, example4, example5, example6 :: [Text] example0 = ["New-York is New-York and New-York"] example1 = ["to-be or not to-be"] example2 = ["to-be-or not to-be-or NOT to-be and"] example3 = example0 <> example0 -- > TEST: Should not have York New in the trie example4 = ["a-b-c-d e a-b-c-d f"] example5 = ["a-b-c-d-e f a-b-c-d-e g a-b-c-d-e"] example6 = ["le-petit chat" ,"le-petit chien" ,"le-petit rat" ,"le gros rat" ] checks0, checks2 :: Checks Double checks0 = -- [(token, count, entropy, ev, autonomy, fwd_entropy, fwd_ev, fwd_autonomy, bwd_entropy, bwd_ev, bwd_autonomy)] [ ("", 1, nan, nan, nan, 0.0, -2.113283334294875, -0.5000000000000002, nan, nan, nan) , ("New", 3, 0.792481250360578, -1.3208020839342969, 0.7499999999999999, 0.0, -2.113283334294875, -0.5000000000000002, 1.584962500721156, -0.5283208335737188, 2.0) , ("York", 3, 0.792481250360578, -1.3208020839342969, 0.7499999999999999, 1.584962500721156, -0.5283208335737188, 2.0, 0.0, -2.113283334294875, -0.5000000000000002) , ("is", 1, 0, -2.113283334294875, -0.5000000000000002, 0.0, -2.113283334294875, -0.5000000000000002, 0.0, -2.113283334294875, -0.5000000000000002) , ("and", 1, 0, -2.113283334294875, -0.5000000000000002, 0.0, -2.113283334294875, -0.5000000000000002, 0.0, -2.113283334294875, -0.5000000000000002) , ("", 0, nan, nan, nan, nan, nan, nan, 0.0, -2.113283334294875, -0.5000000000000002) , (" New", 1, nan, nan, nan, 0.0, nan, nan, nan, nan, nan) , ("New York", 3, 1.584962500721156, 1.584962500721156, 1.414213562373095, 1.584962500721156, 1.584962500721156, 1.4142135623730947, 1.584962500721156, 1.584962500721156, 1.4142135623730951) , ("York is", 1, 0, nan, nan, 0.0, -1.584962500721156, -0.7071067811865476, 0.0, nan, nan) , ("is New", 1, 0, nan, nan, 0.0, nan, nan, 0.0, -1.584962500721156, -0.7071067811865474) , ("York and", 1, 0, nan, nan, 0.0, -1.584962500721156, -0.7071067811865476, 0.0, nan, nan) , ("and New", 1, 0, nan, nan, 0.0, nan, nan, 0.0, -1.584962500721156, -0.7071067811865474) , ("York ", 1, nan, nan, nan, nan, nan, nan, 0.0, nan, nan) , (" New York", 1, nan, nan, nan, 0.0, nan, nan, nan, nan, nan) , ("New York is", 1, 0, nan, nan, 0.0, -1.584962500721156, nan, 0.0, nan, nan) , ("York is New", 1, 0, nan, nan, 0.0, nan, nan, 0.0, nan, nan) , ("is New York", 1, 0, nan, nan, 0.0, nan, nan, 0.0, -1.584962500721156, nan) , ("New York and", 1, 0, nan, nan, 0.0, -1.584962500721156, nan, 0.0, nan, nan) , ("York and New", 1, 0, nan, nan, 0.0, nan, nan, 0.0, nan, nan) , ("and New York", 1, 0, nan, nan, 0.0, nan, nan, 0.0, -1.584962500721156, nan) , ("New York ", 1, nan, nan, nan, nan, nan, nan, 0.0, nan, nan) ] checks2 = [] {- [("to be", 3, 1.2516291673878228, 1.2516291673878228, 1.5535694744293167, nan, 0.9182958340544896) ,("be or", 2, 0.5, nan, nan, nan, 1.0) ,("or not", 1, 0.0, nan, nan, nan, 0.0) ,("not to", 1, 0.0, nan, nan, nan, 0.0) ,("or NOT", 1, 0.0, nan, nan, nan, 0.0) ,("NOT to", 1, 0.0, nan, nan, nan, 0.0) ,("be and", 1, 0.0, nan, nan, nan, 0.0) ] -} runTests :: IO () runTests = forM_ [("example0", 3, example0, checks0) ,("example0", 2, example0, []) ,("example1", 2, example1, []) ,("example2", 3, example2, checks2) ,("example3", 2, example3, []) ,("example4", 4, example4, []) ,("example5", 5, example5, []) ,("example6", 2, example6, []) ] (\(name, n, ex, checks) -> do P.putStrLn $ name <> " " <> show n b <- testEleve False n ex checks P.putStrLn $ " splitting: " <> if b then "PASS" else "FAIL" )