{-| Module : Gargantext.Text.Ngrams Description : Ngrams definition and tools Copyright : (c) CNRS, 2017 - present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX An @n-gram@ is a contiguous sequence of n items from a given sample of text. In Gargantext application the items are words, n is a non negative integer. Using Latin numerical prefixes, an n-gram of size 1 is referred to as a "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size 3 is a "trigram". English cardinal numbers are sometimes used, e.g., "four-gram", "five-gram", and so on. Source: https://en.wikipedia.org/wiki/Ngrams TODO group Ngrams -> Tree compute occ by node of Tree group occs according groups compute cooccurrences compute graph -} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE ConstrainedClassMethods #-} module Gargantext.Text.Terms where import Control.Lens import Data.Map (Map) import qualified Data.Map as Map import Data.Text (Text) import Data.Traversable import GHC.Base (String) import GHC.Generics (Generic) import Gargantext.Core import Gargantext.Core.Types import Gargantext.Core.Flow.Types import Gargantext.Prelude import Gargantext.Text (sentences, HasText(..)) import Gargantext.Text.Terms.Eleve (mainEleveWith, Tries, Token, buildTries, toToken) import Gargantext.Database.Schema.Ngrams (Ngrams(..), NgramsType(..)) import Gargantext.Text.Terms.Mono (monoTerms) import Gargantext.Database.Admin.Utils (Cmd) import Gargantext.Text.Terms.Mono.Stem (stem) import Gargantext.Text.Terms.Mono.Token.En (tokenize) import Gargantext.Text.Terms.Multi (multiterms) import qualified Data.List as List import qualified Data.Set as Set import qualified Data.Text as Text data TermType lang = Mono { _tt_lang :: !lang } | Multi { _tt_lang :: !lang } | MonoMulti { _tt_lang :: !lang } | Unsupervised { _tt_lang :: !lang , _tt_windowSize :: !Int , _tt_ngramsSize :: !Int , _tt_model :: !(Maybe (Tries Token ())) } deriving Generic makeLenses ''TermType --group :: [Text] -> [Text] --group = undefined -- remove Stop Words -- map (filter (\t -> not . elem t)) $ ------------------------------------------------------------------------ -- | Sugar to extract terms from text (hiddeng mapM from end user). --extractTerms :: Traversable t => TermType Lang -> t Text -> IO (t [Terms]) extractTerms :: TermType Lang -> [Text] -> IO [[Terms]] extractTerms (Unsupervised l n s m) xs = mapM (terms (Unsupervised l n s (Just m'))) xs where m' = case m of Just m''-> m'' Nothing -> newTries n (Text.intercalate " " xs) extractTerms termTypeLang xs = mapM (terms termTypeLang) xs ------------------------------------------------------------------------ withLang :: HasText a => TermType Lang -> [DocumentWithId a] -> TermType Lang withLang (Unsupervised l n s m) ns = Unsupervised l n s m' where m' = case m of Nothing -> -- trace ("buildTries here" :: String) Just $ buildTries n ( fmap toToken $ uniText $ Text.intercalate " . " $ List.concat $ map hasText ns ) just_m -> just_m withLang l _ = l ------------------------------------------------------------------------ class ExtractNgramsT h where extractNgramsT :: HasText h => TermType Lang -> h -> Cmd err (Map Ngrams (Map NgramsType Int)) filterNgramsT :: Int -> Map Ngrams (Map NgramsType Int) -> Map Ngrams (Map NgramsType Int) filterNgramsT s ms = Map.fromList $ map (\a -> filter' s a) $ Map.toList ms where filter' s' (ng@(Ngrams t n),y) = case (Text.length t) < s' of True -> (ng,y) False -> (Ngrams (Text.take s' t) n , y) -- ======================================================= -- | Terms from Text -- Mono : mono terms -- Multi : multi terms -- MonoMulti : mono and multi -- TODO : multi terms should exclude mono (intersection is not empty yet) terms :: TermType Lang -> Text -> IO [Terms] terms (Mono lang) txt = pure $ monoTerms lang txt terms (Multi lang) txt = multiterms lang txt terms (MonoMulti lang) txt = terms (Multi lang) txt terms (Unsupervised lang n s m) txt = termsUnsupervised (Unsupervised lang n s (Just m')) txt where m' = maybe (newTries n txt) identity m -- terms (WithList list) txt = pure . concat $ extractTermsWithList list txt ------------------------------------------------------------------------ text2term :: Lang -> [Text] -> Terms text2term _ [] = Terms [] Set.empty text2term lang txt = Terms txt (Set.fromList $ map (stem lang) txt) isPunctuation :: Text -> Bool isPunctuation x = List.elem x $ (Text.pack . pure) <$> ("!?(),;." :: String) -- | Unsupervised ngrams extraction -- language agnostic extraction -- TODO: remove IO -- TODO: newtype BlockText type WindowSize = Int type MinNgramSize = Int termsUnsupervised :: TermType Lang -> Text -> IO [Terms] termsUnsupervised (Unsupervised l n s m) = pure . map (text2term l) . List.nub . (List.filter (\l' -> List.length l' >= s)) . List.concat . mainEleveWith (maybe (panic "no model") identity m) n . uniText termsUnsupervised _ = undefined newTries :: Int -> Text -> Tries Token () newTries n t = buildTries n (fmap toToken $ uniText t) -- | TODO removing long terms > 24 uniText :: Text -> [[Text]] uniText = map (List.filter (not . isPunctuation)) . map tokenize . sentences -- | TODO get sentences according to lang . Text.toLower