{-| Module : Gargantext.Viz.Phylo.TemporalMatching Description : Module dedicated to the adaptative temporal matching of a Phylo. Copyright : (c) CNRS, 2017-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX -} module Gargantext.Viz.Phylo.TemporalMatching where import Data.List (concat, splitAt, tail, sortOn, (++), intersect, null, inits, groupBy, scanl, nub, nubBy, union, dropWhile, partition, or, sort, (!!)) import Data.Map (Map, fromList, elems, restrictKeys, unionWith, findWithDefault, keys, (!), (!?), filterWithKey, singleton, empty, mapKeys, adjust) import Gargantext.Prelude import Gargantext.Viz.AdaptativePhylo import Gargantext.Viz.Phylo.PhyloTools import Prelude (floor) import Control.Lens hiding (Level) import Control.Parallel.Strategies (parList, rdeepseq, using) import Debug.Trace (trace) import Text.Printf import qualified Data.Map as Map import qualified Data.Set as Set ------------------- -- | Proximity | -- ------------------- -- | To compute a jaccard similarity between two lists jaccard :: [Int] -> [Int] -> Double jaccard inter' union' = ((fromIntegral . length) $ inter') / ((fromIntegral . length) $ union') -- | Process the inverse sumLog sumInvLog' :: Double -> Double -> [Double] -> Double sumInvLog' s nb diago = foldl (\mem occ -> mem + (1 / (log (occ + s) / log (nb + s)))) 0 diago -- | Process the sumLog sumLog' :: Double -> Double -> [Double] -> Double sumLog' s nb diago = foldl (\mem occ -> mem + (log (occ + s) / log (nb + s))) 0 diago weightedLogJaccard' :: Double -> Double -> Map Int Double -> [Int] -> [Int] -> Double weightedLogJaccard' sens nbDocs diago ngrams ngrams' | null ngramsInter = 0 | ngramsInter == ngramsUnion = 1 | sens == 0 = jaccard ngramsInter ngramsUnion | sens > 0 = (sumInvLog' sens nbDocs diagoInter) / (sumInvLog' sens nbDocs diagoUnion) | otherwise = (sumLog' sens nbDocs diagoInter) / (sumLog' sens nbDocs diagoUnion) where -------------------------------------- ngramsInter :: [Int] ngramsInter = intersect ngrams ngrams' -------------------------------------- ngramsUnion :: [Int] ngramsUnion = union ngrams ngrams' -------------------------------------- diagoInter :: [Double] diagoInter = elems $ restrictKeys diago (Set.fromList ngramsInter) -------------------------------------- diagoUnion :: [Double] diagoUnion = elems $ restrictKeys diago (Set.fromList ngramsUnion) -------------------------------------- -- | To process the proximity between a current group and a pair of targets group toProximity :: Double -> Map Int Double -> Proximity -> [Int] -> [Int] -> [Int] -> Double toProximity nbDocs diago proximity egoNgrams targetNgrams targetNgrams' = case proximity of WeightedLogJaccard sens -> let pairNgrams = if targetNgrams == targetNgrams' then targetNgrams else union targetNgrams targetNgrams' in weightedLogJaccard' sens nbDocs diago egoNgrams pairNgrams Hamming -> undefined ------------------------ -- | Local Matching | -- ------------------------ findLastPeriod :: Filiation -> [PhyloPeriodId] -> PhyloPeriodId findLastPeriod fil periods = case fil of ToParents -> head' "findLastPeriod" (sortOn fst periods) ToChilds -> last' "findLastPeriod" (sortOn fst periods) -- | To filter pairs of candidates related to old pointers periods removeOldPointers :: [Pointer] -> Filiation -> Double -> Proximity -> PhyloPeriodId -> [((PhyloGroupId,[Int]),(PhyloGroupId,[Int]))] -> [((PhyloGroupId,[Int]),(PhyloGroupId,[Int]))] removeOldPointers oldPointers fil thr prox prd pairs | null oldPointers = pairs | null (filterPointers prox thr oldPointers) = let lastMatchedPrd = findLastPeriod fil (map (fst . fst . fst) oldPointers) in if lastMatchedPrd == prd then [] else filter (\((id,_),(id',_)) -> case fil of ToParents -> (((fst . fst . fst) id ) < (fst lastMatchedPrd)) || (((fst . fst . fst) id') < (fst lastMatchedPrd)) ToChilds -> (((fst . fst . fst) id ) > (fst lastMatchedPrd)) || (((fst . fst . fst) id') > (fst lastMatchedPrd))) pairs | otherwise = [] makePairs' :: (PhyloGroupId,[Int]) -> [(PhyloGroupId,[Int])] -> [PhyloPeriodId] -> [Pointer] -> Filiation -> Double -> Proximity -> Map Date Double -> Map Date Cooc -> [((PhyloGroupId,[Int]),(PhyloGroupId,[Int]))] makePairs' (egoId, egoNgrams) candidates periods oldPointers fil thr prox docs diagos = if (null periods) then [] else removeOldPointers oldPointers fil thr prox lastPrd {- at least on of the pair candidates should be from the last added period -} $ filter (\((id,_),(id',_)) -> ((fst . fst) id == lastPrd) || ((fst . fst) id' == lastPrd)) $ listToKeys $ filter (\(id,ngrams) -> let nbDocs = (sum . elems) $ filterDocs docs ([(fst . fst) egoId, (fst . fst) id]) diago = reduceDiagos $ filterDiago diagos ([(fst . fst) egoId, (fst . fst) id]) in (toProximity nbDocs diago prox egoNgrams egoNgrams ngrams) >= thr ) candidates where lastPrd :: PhyloPeriodId lastPrd = findLastPeriod fil periods filterPointers :: Proximity -> Double -> [Pointer] -> [Pointer] filterPointers proxi thr pts = filter (\(_,w) -> filterProximity proxi thr w) pts filterPointers' :: Proximity -> Double -> [(Pointer,[Int])] -> [(Pointer,[Int])] filterPointers' proxi thr pts = filter (\((_,w),_) -> filterProximity proxi thr w) pts reduceDiagos :: Map Date Cooc -> Map Int Double reduceDiagos diagos = mapKeys (\(k,_) -> k) $ foldl (\acc diago -> unionWith (+) acc diago) empty (elems diagos) filterPointersByPeriod :: Filiation -> [(Pointer,[Int])] -> [Pointer] filterPointersByPeriod fil pts = let pts' = sortOn (fst . fst . fst . fst) pts inf = (fst . fst . fst . fst) $ head' "filterPointersByPeriod" pts' sup = (fst . fst . fst . fst) $ last' "filterPointersByPeriod" pts' in map fst $ nubBy (\pt pt' -> snd pt == snd pt') $ filter (\pt -> ((fst . fst . fst . fst) pt == inf) || ((fst . fst . fst . fst) pt == sup)) $ case fil of ToParents -> reverse pts' ToChilds -> pts' phyloGroupMatching :: [[(PhyloGroupId,[Int])]] -> Filiation -> Proximity -> Map Date Double -> Map Date Cooc -> Double -> [Pointer] -> (PhyloGroupId,[Int]) -> [Pointer] phyloGroupMatching candidates fil proxi docs diagos thr oldPointers (id,ngrams) = if (null $ filterPointers proxi thr oldPointers) {- let's find new pointers -} then if null nextPointers then [] else filterPointersByPeriod fil $ head' "phyloGroupMatching" -- Keep only the best set of pointers grouped by proximity $ groupBy (\pt pt' -> (snd . fst) pt == (snd . fst) pt') $ reverse $ sortOn (snd . fst) $ head' "pointers" nextPointers -- Find the first time frame where at leats one pointer satisfies the proximity threshold else oldPointers where nextPointers :: [[(Pointer,[Int])]] nextPointers = take 1 $ dropWhile (null) {- for each time frame, process the proximity on relevant pairs of targeted groups -} $ scanl (\acc groups -> let periods = nub $ map (fst . fst . fst) $ concat groups nbdocs = sum $ elems $ (filterDocs docs ([(fst . fst) id] ++ periods)) diago = reduceDiagos $ filterDiago diagos ([(fst . fst) id] ++ periods) {- important resize nbdocs et diago dans le make pairs -} pairs = makePairs' (id,ngrams) (concat groups) periods oldPointers fil thr proxi docs diagos in acc ++ ( filterPointers' proxi thr $ concat $ map (\(c,c') -> {- process the proximity between the current group and a pair of candidates -} let proximity = toProximity nbdocs diago proxi ngrams (snd c) (snd c') in if ((c == c') || (snd c == snd c')) then [((fst c,proximity),snd c)] else [((fst c,proximity),snd c),((fst c',proximity),snd c')] ) pairs )) [] $ inits candidates -- groups from [[1900],[1900,1901],[1900,1901,1902],...] filterDocs :: Map Date Double -> [PhyloPeriodId] -> Map Date Double filterDocs d pds = restrictKeys d $ periodsToYears pds filterDiago :: Map Date Cooc -> [PhyloPeriodId] -> Map Date Cooc filterDiago diago pds = restrictKeys diago $ periodsToYears pds ----------------------------- -- | Matching Processing | -- ----------------------------- getNextPeriods :: Filiation -> Int -> PhyloPeriodId -> [PhyloPeriodId] -> [PhyloPeriodId] getNextPeriods fil max' pId pIds = case fil of ToChilds -> take max' $ (tail . snd) $ splitAt (elemIndex' pId pIds) pIds ToParents -> take max' $ (reverse . fst) $ splitAt (elemIndex' pId pIds) pIds getCandidates :: PhyloGroup -> [[(PhyloGroupId,[Int])]] -> [[(PhyloGroupId,[Int])]] getCandidates ego targets = map (\groups' -> filter (\g' -> (not . null) $ intersect (ego ^. phylo_groupNgrams) (snd g') ) groups') targets matchGroupsToGroups :: Int -> [PhyloPeriodId] -> Proximity -> Double -> Map Date Double -> Map Date Cooc -> [PhyloGroup] -> [PhyloGroup] matchGroupsToGroups frame periods proximity thr docs coocs groups = let groups' = groupByField _phylo_groupPeriod groups in foldl' (\acc prd -> let -- 1) find the parents/childs matching periods periodsPar = getNextPeriods ToParents frame prd periods periodsChi = getNextPeriods ToChilds frame prd periods -- 2) find the parents/childs matching candidates candidatesPar = map (\prd' -> map (\g -> (getGroupId g, g ^. phylo_groupNgrams)) $ findWithDefault [] prd' groups') periodsPar candidatesChi = map (\prd' -> map (\g -> (getGroupId g, g ^. phylo_groupNgrams)) $ findWithDefault [] prd' groups') periodsChi -- 3) find the parents/child number of docs by years docsPar = filterDocs docs ([prd] ++ periodsPar) docsChi = filterDocs docs ([prd] ++ periodsChi) -- 4) find the parents/child diago by years diagoPar = filterDiago (map coocToDiago coocs) ([prd] ++ periodsPar) diagoChi = filterDiago (map coocToDiago coocs) ([prd] ++ periodsPar) -- 5) match in parallel all the groups (egos) to their possible candidates egos = map (\ego -> let pointersPar = phyloGroupMatching (getCandidates ego candidatesPar) ToParents proximity docsPar diagoPar thr (getPeriodPointers ToParents ego) (getGroupId ego, ego ^. phylo_groupNgrams) pointersChi = phyloGroupMatching (getCandidates ego candidatesChi) ToChilds proximity docsChi diagoChi thr (getPeriodPointers ToChilds ego) (getGroupId ego, ego ^. phylo_groupNgrams) in addPointers ToChilds TemporalPointer pointersChi $ addPointers ToParents TemporalPointer pointersPar ego) $ findWithDefault [] prd groups' egos' = egos `using` parList rdeepseq in acc ++ egos' ) [] periods ----------------------- -- | Phylo Quality | -- ----------------------- relevantBranches :: Int -> [[PhyloGroup]] -> [[PhyloGroup]] relevantBranches term branches = filter (\groups -> (any (\group -> elem term $ group ^. phylo_groupNgrams) groups)) branches accuracy :: Int -> [PhyloGroup] -> Double accuracy x bk = ((fromIntegral $ length $ filter (\g -> elem x $ g ^. phylo_groupNgrams) bk) / (fromIntegral $ length bk)) recall :: Int -> [PhyloGroup] -> [[PhyloGroup]] -> Double recall x bk bx = ((fromIntegral $ length $ filter (\g -> elem x $ g ^. phylo_groupNgrams) bk) / (fromIntegral $ length $ filter (\g -> elem x $ g ^. phylo_groupNgrams) $ concat bx)) fScore :: Double -> Int -> [PhyloGroup] -> [[PhyloGroup]] -> Double fScore beta x bk bx = let rec = recall x bk bx acc = accuracy x bk in ((1 + beta ** 2) * acc * rec) / (((beta ** 2) * rec + acc)) wk :: [PhyloGroup] -> Double wk bk = fromIntegral $ length bk toPhyloQuality' :: Double -> Map Int Double -> [[PhyloGroup]] -> Double toPhyloQuality' beta freq branches = if (null branches) then 0 else sum $ map (\i -> let bks = relevantBranches i branches in (freq ! i) * (sum $ map (\bk -> ((wk bk) / (sum $ map wk bks)) * (fScore beta i bk bks)) bks)) $ keys freq toRecall :: Map Int Double -> [[PhyloGroup]] -> Double toRecall freq branches = if (null branches) then 0 else sum $ map (\x -> let px = freq ! x bx = relevantBranches x branches wks = sum $ map wk bx in (px / pys) * (sum $ map (\bk -> ((wk bk) / wks) * (recall x bk bx)) bx)) $ keys freq where pys :: Double pys = sum (elems freq) toAccuracy :: Map Int Double -> [[PhyloGroup]] -> Double toAccuracy freq branches = if (null branches) then 0 else sum $ map (\x -> let px = freq ! x bx = relevantBranches x branches wks = sum $ map wk bx in (px / pys) * (sum $ map (\bk -> ((wk bk) / wks) * (accuracy x bk)) bx)) $ keys freq where pys :: Double pys = sum (elems freq) -- | here we do the average of all the local f_scores toPhyloQuality :: Double -> Map Int Double -> [[PhyloGroup]] -> Double toPhyloQuality beta freq branches = if (null branches) then 0 else sum $ map (\x -> let px = freq ! x bx = relevantBranches x branches wks = sum $ map wk bx in (px / pys) * (sum $ map (\bk -> ((wk bk) / wks) * (fScore beta x bk bx)) bx)) $ keys freq where pys :: Double pys = sum (elems freq) ------------------------------------ -- | Constant Temporal Matching | -- ------------------------------------ groupsToBranches' :: Map PhyloGroupId PhyloGroup -> [[PhyloGroup]] groupsToBranches' groups = -- | run the related component algorithm let egos = groupBy (\gs gs' -> (fst $ fst $ head' "egos" gs) == (fst $ fst $ head' "egos" gs')) $ sortOn (\gs -> fst $ fst $ head' "egos" gs) $ map (\group -> [getGroupId group] ++ (map fst $ group ^. phylo_groupPeriodParents) ++ (map fst $ group ^. phylo_groupPeriodChilds) ) $ elems groups -- first find the related components by inside each ego's period -- a supprimer graph' = map relatedComponents egos -- then run it for the all the periods graph = zip [1..] $ relatedComponents $ concat (graph' `using` parList rdeepseq) -- update each group's branch id in map (\(bId,ids) -> let groups' = map (\group -> group & phylo_groupBranchId %~ (\(lvl,lst) -> (lvl,lst ++ [bId]))) $ elems $ restrictKeys groups (Set.fromList ids) in groups' `using` parList rdeepseq ) graph reduceFrequency :: Map Int Double -> [[PhyloGroup]] -> Map Int Double reduceFrequency frequency branches = restrictKeys frequency (Set.fromList $ (nub . concat) $ map _phylo_groupNgrams $ concat branches) updateThr :: Double -> [[PhyloGroup]] -> [[PhyloGroup]] updateThr thr branches = map (\b -> map (\g -> g & phylo_groupMeta .~ (singleton "seaLevels" (((g ^. phylo_groupMeta) ! "seaLevels") ++ [thr]))) b) branches -- Sequentially break each branch of a phylo where -- done = all the allready broken branches -- ego = the current branch we want to break -- rest = the branches we still have to break breakBranches :: Proximity -> Double -> Map Int Double -> Int -> Double -> Double -> Double -> Int -> Map Date Double -> Map Date Cooc -> [PhyloPeriodId] -> [([PhyloGroup],Bool)] -> ([PhyloGroup],Bool) -> [([PhyloGroup],Bool)] -> [([PhyloGroup],Bool)] breakBranches proximity beta frequency minBranch thr depth elevation frame docs coocs periods done ego rest = -- 1) keep or not the new division of ego let done' = done ++ (if snd ego then (if ((null (fst ego')) || (quality > quality')) then -- trace (" ✗ F(β) = " <> show(quality) <> " (vs) " <> show(quality') -- <> " | " <> show(length $ fst ego) <> " groups : " -- <> " |✓ " <> show(length $ fst ego') <> show(map length $ fst ego') -- <> " |✗ " <> show(length $ snd ego') <> "[" <> show(length $ concat $ snd ego') <> "]") [(fst ego,False)] else -- trace (" ✓ level = " <> printf "%.1f" thr <> "") -- trace (" ✓ F(β) = " <> show(quality) <> " (vs) " <> show(quality') -- <> " | " <> show(length $ fst ego) <> " groups : " -- <> " |✓ " <> show(length $ fst ego') <> show(map length $ fst ego') -- <> " |✗ " <> show(length $ snd ego') <> "[" <> show(length $ concat $ snd ego') <> "]") ((map (\e -> (e,True)) (fst ego')) ++ (map (\e -> (e,False)) (snd ego')))) else [ego]) in -- 2) if there is no more branches in rest then return else continue if null rest then done' else breakBranches proximity beta frequency minBranch thr depth elevation frame docs coocs periods done' (head' "breakBranches" rest) (tail' "breakBranches" rest) where -------------------------------------- quality :: Double quality = toPhyloQuality beta frequency ((map fst done) ++ [fst ego] ++ (map fst rest)) -------------------------------------- ego' :: ([[PhyloGroup]],[[PhyloGroup]]) ego' = let branches = groupsToBranches' $ fromList $ map (\g -> (getGroupId g, g)) $ matchGroupsToGroups frame periods proximity thr docs coocs (fst ego) branches' = branches `using` parList rdeepseq in partition (\b -> (length $ nub $ map _phylo_groupPeriod b) >= minBranch) $ thrToMeta thr $ depthToMeta (elevation - depth) branches' -------------------------------------- quality' :: Double quality' = toPhyloQuality beta frequency ((map fst done) ++ (fst ego') ++ (snd ego') ++ (map fst rest)) seaLevelMatching :: Proximity -> Double -> Int -> Map Int Double -> Double -> Double -> Double -> Double -> Int -> [PhyloPeriodId] -> Map Date Double -> Map Date Cooc -> [([PhyloGroup],Bool)] -> [([PhyloGroup],Bool)] seaLevelMatching proximity beta minBranch frequency thr step depth elevation frame periods docs coocs branches = -- if there is no branch to break or if seaLvl level > 1 then end if (thr >= 1) || ((not . or) $ map snd branches) then branches else -- break all the possible branches at the current seaLvl level let quality = toPhyloQuality beta frequency (map fst branches) acc = toAccuracy frequency (map fst branches) rec = toRecall frequency (map fst branches) branches' = trace ("↑ level = " <> printf "%.3f" thr <> " F(β) = " <> printf "%.5f" quality <> " ξ = " <> printf "%.5f" acc <> " ρ = " <> printf "%.5f" rec <> " branches = " <> show(length branches) <> " ↴") $ breakBranches proximity beta frequency minBranch thr depth elevation frame docs coocs periods [] (head' "seaLevelMatching" branches) (tail' "seaLevelMatching" branches) frequency' = reduceFrequency frequency (map fst branches') in seaLevelMatching proximity beta minBranch frequency' (thr + step) step (depth - 1) elevation frame periods docs coocs branches' constanteTemporalMatching :: Double -> Double -> Phylo -> Phylo constanteTemporalMatching start step phylo = updatePhyloGroups 1 (fromList $ map (\g -> (getGroupId g,g)) $ traceMatchEnd $ concat branches) (toPhyloHorizon phylo) where -- 2) process the temporal matching by elevating seaLvl level branches :: [[PhyloGroup]] branches = map fst $ seaLevelMatching (phyloProximity $ getConfig phylo) (_qua_granularity $ phyloQuality $ getConfig phylo) (_qua_minBranch $ phyloQuality $ getConfig phylo) (phylo ^. phylo_termFreq) start step ((((1 - start) / step) - 1)) (((1 - start) / step)) (getTimeFrame $ timeUnit $ getConfig phylo) (getPeriodIds phylo) (phylo ^. phylo_timeDocs) (phylo ^. phylo_timeCooc) groups -- 1) for each group process an initial temporal Matching -- here we suppose that all the groups of level 1 are part of the same big branch groups :: [([PhyloGroup],Bool)] groups = map (\b -> (b,(length $ nub $ map _phylo_groupPeriod b) >= (_qua_minBranch $ phyloQuality $ getConfig phylo))) $ groupsToBranches' $ fromList $ map (\g -> (getGroupId g, g)) $ matchGroupsToGroups (getTimeFrame $ timeUnit $ getConfig phylo) (getPeriodIds phylo) (phyloProximity $ getConfig phylo) start (phylo ^. phylo_timeDocs) (phylo ^. phylo_timeCooc) (traceTemporalMatching $ getGroupsFromLevel 1 phylo) ----------------- -- | Horizon | -- ----------------- toPhyloHorizon :: Phylo -> Phylo toPhyloHorizon phylo = let t0 = take 1 (getPeriodIds phylo) groups = getGroupsFromLevelPeriods 1 t0 phylo sens = getSensibility (phyloProximity $ getConfig phylo) nbDocs = sum $ elems $ filterDocs (phylo ^. phylo_timeDocs) t0 diago = reduceDiagos $ filterDiago (phylo ^. phylo_timeCooc) t0 in phylo & phylo_horizon .~ (fromList $ map (\(g,g') -> ((getGroupId g,getGroupId g'),weightedLogJaccard' sens nbDocs diago (g ^. phylo_groupNgrams) (g' ^. phylo_groupNgrams))) $ listToCombi' groups) -------------------------------------- -- | Adaptative Temporal Matching | -- -------------------------------------- thrToMeta :: Double -> [[PhyloGroup]] -> [[PhyloGroup]] thrToMeta thr branches = map (\b -> map (\g -> g & phylo_groupMeta .~ (adjust (\lst -> lst ++ [thr]) "seaLevels" (g ^. phylo_groupMeta))) b) branches depthToMeta :: Double -> [[PhyloGroup]] -> [[PhyloGroup]] depthToMeta depth branches = let break = length branches > 1 in map (\b -> map (\g -> if break then g & phylo_groupMeta .~ (adjust (\lst -> lst ++ [depth]) "breaks"(g ^. phylo_groupMeta)) else g) b) branches reduceTupleMapByKeys :: Eq a => [a] -> Map (a,a) Double -> Map (a,a) Double reduceTupleMapByKeys ks m = filterWithKey (\(k,k') _ -> (elem k ks) && (elem k' ks)) m getInTupleMap :: Ord a => Map (a,a) Double -> a -> a -> Double getInTupleMap m k k' | isJust (m !? ( k ,k')) = m ! ( k ,k') | isJust (m !? ( k',k )) = m ! ( k',k ) | otherwise = 0 toThreshold :: Double -> Map (PhyloGroupId,PhyloGroupId) Double -> Double toThreshold lvl proxiGroups = let idx = ((Map.size proxiGroups) `div` (floor lvl)) - 1 in if idx >= 0 then (sort $ elems proxiGroups) !! idx else 1 -- done = all the allready broken branches -- ego = the current branch we want to break -- rest = the branches we still have to break adaptativeBreakBranches :: Proximity -> Double -> Double -> Map (PhyloGroupId,PhyloGroupId) Double -> Double -> Map Int Double -> Int -> Int -> Map Date Double -> Map Date Cooc -> [PhyloPeriodId] -> [([PhyloGroup],(Bool,[Double]))] -> ([PhyloGroup],(Bool,[Double])) -> [([PhyloGroup],(Bool,[Double]))] -> [([PhyloGroup],(Bool,[Double]))] adaptativeBreakBranches proxiConf depth elevation groupsProxi beta frequency minBranch frame docs coocs periods done ego rest = -- 1) keep or not the new division of ego let done' = done ++ (if (fst . snd) ego then (if ((null (fst ego')) || (quality > quality')) then [(concat $ thrToMeta thr $ [fst ego],(False, ((snd . snd) ego)))] else ( (map (\e -> (e,(True, ((snd . snd) ego) ++ [thr]))) (fst ego')) ++ (map (\e -> (e,(False, ((snd . snd) ego)))) (snd ego')))) else [(concat $ thrToMeta thr $ [fst ego], snd ego)]) in -- uncomment let .. in for debugging -- let part1 = partition (snd) done' -- part2 = partition (snd) rest -- in trace ( "[✓ " <> show(length $ fst part1) <> "(" <> show(length $ concat $ map (fst) $ fst part1) <> ")|✗ " <> show(length $ snd part1) <> "(" <> show(length $ concat $ map (fst) $ snd part1) <> ")] " -- <> "[✓ " <> show(length $ fst part2) <> "(" <> show(length $ concat $ map (fst) $ fst part2) <> ")|✗ " <> show(length $ snd part2) <> "(" <> show(length $ concat $ map (fst) $ snd part2) <> ")]" -- ) $ -- 2) if there is no more branches in rest then return else continue if null rest then done' else adaptativeBreakBranches proxiConf depth elevation groupsProxi beta frequency minBranch frame docs coocs periods done' (head' "breakBranches" rest) (tail' "breakBranches" rest) where -------------------------------------- thr :: Double thr = toThreshold depth $ Map.filter (\v -> v > (last' "breakBranches" $ (snd . snd) ego)) $ reduceTupleMapByKeys (map getGroupId $ fst ego) groupsProxi -------------------------------------- quality :: Double quality = toPhyloQuality beta frequency ((map fst done) ++ [fst ego] ++ (map fst rest)) -------------------------------------- ego' :: ([[PhyloGroup]],[[PhyloGroup]]) ego' = let branches = groupsToBranches' $ fromList $ map (\g -> (getGroupId g, g)) $ matchGroupsToGroups frame periods proxiConf thr docs coocs (fst ego) branches' = branches `using` parList rdeepseq in partition (\b -> (length $ nub $ map _phylo_groupPeriod b) > minBranch) $ thrToMeta thr $ depthToMeta (elevation - depth) branches' -------------------------------------- quality' :: Double quality' = toPhyloQuality beta frequency ((map fst done) ++ (fst ego') ++ (snd ego') ++ (map fst rest)) adaptativeSeaLevelMatching :: Proximity -> Double -> Double -> Map (PhyloGroupId, PhyloGroupId) Double -> Double -> Int -> Map Int Double -> Int -> [PhyloPeriodId] -> Map Date Double -> Map Date Cooc -> [([PhyloGroup],(Bool,[Double]))] -> [([PhyloGroup],(Bool,[Double]))] adaptativeSeaLevelMatching proxiConf depth elevation groupsProxi beta minBranch frequency frame periods docs coocs branches = -- if there is no branch to break or if seaLvl level >= depth then end if (Map.null groupsProxi) || (depth <= 0) || ((not . or) $ map (fst . snd) branches) then branches else -- break all the possible branches at the current seaLvl level let branches' = adaptativeBreakBranches proxiConf depth elevation groupsProxi beta frequency minBranch frame docs coocs periods [] (head' "seaLevelMatching" branches) (tail' "seaLevelMatching" branches) frequency' = reduceFrequency frequency (map fst branches') groupsProxi' = reduceTupleMapByKeys (map (getGroupId) $ concat $ map (fst) $ filter (fst . snd) branches') groupsProxi -- thr = toThreshold depth groupsProxi in trace("\n " <> foldl (\acc _ -> acc <> "🌊 ") "" [0..(elevation - depth)] <> " [✓ " <> show(length $ filter (fst . snd) branches') <> "(" <> show(length $ concat $ map (fst) $ filter (fst . snd) branches') <> ")|✗ " <> show(length $ filter (not . fst . snd) branches') <> "(" <> show(length $ concat $ map (fst) $ filter (not . fst . snd) branches') <> ")]" <> " thr = ") $ adaptativeSeaLevelMatching proxiConf (depth - 1) elevation groupsProxi' beta minBranch frequency' frame periods docs coocs branches' adaptativeTemporalMatching :: Double -> Phylo -> Phylo adaptativeTemporalMatching elevation phylo = updatePhyloGroups 1 (fromList $ map (\g -> (getGroupId g,g)) $ traceMatchEnd $ concat branches) (toPhyloHorizon phylo) where -- 2) process the temporal matching by elevating seaLvl level branches :: [[PhyloGroup]] branches = map fst $ adaptativeSeaLevelMatching (phyloProximity $ getConfig phylo) (elevation - 1) elevation (phylo ^. phylo_groupsProxi) (_qua_granularity $ phyloQuality $ getConfig phylo) (_qua_minBranch $ phyloQuality $ getConfig phylo) (phylo ^. phylo_termFreq) (getTimeFrame $ timeUnit $ getConfig phylo) (getPeriodIds phylo) (phylo ^. phylo_timeDocs) (phylo ^. phylo_timeCooc) groups -- 1) for each group process an initial temporal Matching -- here we suppose that all the groups of level 1 are part of the same big branch groups :: [([PhyloGroup],(Bool,[Double]))] groups = map (\b -> (b,((length $ nub $ map _phylo_groupPeriod b) >= (_qua_minBranch $ phyloQuality $ getConfig phylo),[thr]))) $ groupsToBranches' $ fromList $ map (\g -> (getGroupId g, g)) $ matchGroupsToGroups (getTimeFrame $ timeUnit $ getConfig phylo) (getPeriodIds phylo) (phyloProximity $ getConfig phylo) thr (phylo ^. phylo_timeDocs) (phylo ^. phylo_timeCooc) (traceTemporalMatching $ getGroupsFromLevel 1 phylo) -------------------------------------- thr :: Double thr = toThreshold elevation (phylo ^. phylo_groupsProxi)