{-| Module : Gargantext.Database.Bashql Description : BASHQL to deal with Gargantext Database. Copyright : (c) CNRS, 2017-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX * BASHQL is a Domain Specific Language to deal with the Database * BASHQL = functional (Bash * SQL) * Which language to chose when working with a database ? To make it simple, instead of all common Object Relational Mapping (ORM) [1] strategy used nowadays inspired more by object logic than functional logic, the semantics of BASHQL with focus on the function first. * BASHQL focus on the function, i.e. use bash language function name, and make it with SQL behind the scene. Then BASHQL is inspired more by Bash language [2] than SQL and then follows its main commands as specification and documentation. * Main arguments: 1. Theoritical: database and FileSystems are each thought as a single category, assumption based on theoretical work on databases by David Spivak [0]. 2. Practical argument: basic bash commands are a daily practice among developper community. * How to help ? 1. Choose a command you like in Bash 2. Implement it in Haskell-SQL according to Gargantext Shema (Tree like filesystem) 3. Translate it in BASHQL (follow previous implementations) 4. Make a pull request (enjoy the community) * Implementation strategy: Functional adapations are made to the gargantext languages options and SQL optimization are done continuously during the project. For the Haskellish part, you may be inspired by Turtle implementation written by Gabriel Gonzales [3] which shows how to write Haskell bash translations. * Semantics - FileSystem is now a NodeSystem where each File is a Node in a Directed Graph (DG). * References [0] MIT Press has published "Category theory for the sciences". The book can also be purchased on Amazon. Here are reviews by the MAA, by the AMS, and by SIAM. [1] https://en.wikipedia.org/wiki/Object-relational_mapping [2] https://en.wikipedia.org/wiki/Bash_(Unix_shell) [3] https://github.com/Gabriel439/Haskell-Turtle-Library -} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE RankNTypes #-} module Gargantext.Database.Bashql ( get , ls , home , post , del , mv , put , rename , tree -- , mkCorpus, mkAnnuaire ) where import Control.Monad.Reader -- (Reader, ask) import Data.Text (Text) import Data.List (concat, last) import Gargantext.Core.Types import Gargantext.Database.Utils (runOpaQuery, Cmd) import Gargantext.Database.Schema.Node import qualified Gargantext.Database.Node.Update as U (Update(..), update) import Gargantext.Prelude -- List of NodeId -- type PWD a = PWD UserId [a] type PWD = [NodeId] --data PWD' a = a | PWD' [a] rename :: NodeId -> Text -> Cmd err [Int] rename n t = U.update $ U.Rename n t mv :: NodeId -> ParentId -> Cmd err [Int] mv n p = U.update $ U.Move n p -- | TODO get Children or Node get :: PWD -> Cmd err [Node HyperdataAny] get [] = pure [] get pwd = runOpaQuery $ selectNodesWithParentID (last pwd) -- | Home, need to filter with UserId home :: Cmd err PWD home = map _node_id <$> getNodesWithParentId 0 Nothing -- | ls == get Children ls :: PWD -> Cmd err [Node HyperdataAny] ls = get tree :: PWD -> Cmd err [Node HyperdataAny] tree p = do ns <- get p children <- mapM (\n -> get [_node_id n]) ns pure $ ns <> concat children -- | TODO post :: PWD -> [NodeWrite] -> Cmd err Int64 post [] _ = pure 0 post _ [] = pure 0 post pth ns = insertNodesWithParent (Just $ last pth) ns --postR :: PWD -> [NodeWrite'] -> Cmd err [Int] --postR [] _ _ = pure [0] --postR _ [] _ = pure [0] --postR pth ns c = mkNodeR (last pth) ns c -- | WIP -- rm : mv to trash -- del : empty trash --rm :: PWD -> [NodeId] -> IO Int --rm = del del :: [NodeId] -> Cmd err Int del [] = pure 0 del ns = deleteNodes ns -- | TODO put :: U.Update -> Cmd err [Int] put = U.update -- | TODO -- cd (Home UserId) | (Node NodeId) -- cd Path -- jump NodeId -- touch Dir -- type Name = Text