{-| Module : Gargantext.Pipeline Description : Server API Copyright : (c) CNRS, 2017-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX -} {-# OPTIONS_GHC -fno-warn-name-shadowing #-} {-# LANGUAGE NoImplicitPrelude #-} module Gargantext.Pipeline where import Data.Text.IO (readFile) import Control.Arrow ((***)) import Data.Map.Strict (Map) import qualified Data.Map.Strict as M import qualified Data.Set as S import qualified Data.List as L import Data.Tuple.Extra (both) ---------------------------------------------- import Gargantext.Core (Lang(FR)) import Gargantext.Prelude import Gargantext.Viz.Graph.Index (score, createIndices, toIndex, fromIndex, cooc2mat, mat2map) import Gargantext.Viz.Graph.Distances.Matrice (incExcSpeGen, conditional) import Gargantext.Viz.Graph.Index (Index) import Gargantext.Text.Metrics.Occurrences (cooc, removeApax) import Gargantext.Text.Terms (TermType(Multi, Mono), extractTerms) import Gargantext.Text.Context (splitBy, SplitContext(Sentences)) import Data.Graph.Clustering.Louvain.CplusPlus (cLouvain) --filterCooc :: Ord t => Map (t, t) Int -> Map (t, t) Int --filterCooc m = ---- filterCooc m = foldl (\k -> maybe (panic "no key") identity $ M.lookup k m) M.empty selection ----(ti, fi) = createIndices m -- . fromIndex fi $ filterMat $ cooc2mat ti m import Data.Array.Accelerate (Matrix) filterMat :: Matrix Int -> [(Index, Index)] filterMat m = S.toList $ S.take n $ S.fromList $ (L.take nIe incExc') <> (L.take nSg speGen') where (incExc', speGen') = both ( map fst . L.sortOn snd . M.toList . mat2map) (incExcSpeGen m) n = nIe + nSg nIe = 30 nSg = 70 pipeline path = do -- Text <- IO Text <- FilePath text <- readFile path let contexts = splitBy (Sentences 3) text myterms <- extractTerms Multi FR contexts -- TODO filter (\t -> not . elem t stopList) myterms -- TODO groupBy (Stem | GroupList) let myCooc = removeApax $ cooc myterms let (ti, fi) = createIndices myCooc pure ti -- Cooc -> Matrix -- -- filter by spec/gen (dynmaic programming) -- let theScores = M.filter (>0) $ score conditional myCoocFiltered ---- ------ -- Matrix -> Clustering ------ pure $ bestpartition False $ map2graph $ toIndex ti theScores -- partitions <- cLouvain theScores -- pure partitions ---- | Building : -> Graph -> JSON