{-| Module : Gargantext.Core.Viz.Graph.Tools Description : Tools to build Graph Copyright : (c) CNRS, 2017-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX -} {-# LANGUAGE ScopedTypeVariables #-} module Gargantext.Core.Viz.Graph.Tools where -- import Data.Graph.Clustering.Louvain (hLouvain, {-iLouvainMap-}) import Data.HashMap.Strict (HashMap) import Data.Map (Map) import Data.Text (Text) -- import Debug.Trace (trace) import GHC.Float (sin, cos) import Gargantext.API.Ngrams.Types (NgramsTerm(..)) import Gargantext.Core.Methods.Distances.Conditional (conditional) import Gargantext.Core.Methods.Distances (Distance(..), measure) import Gargantext.Core.Methods.Graph.BAC.Proxemy (confluence) import Gargantext.Core.Statistics import Gargantext.Core.Viz.Graph import Gargantext.Core.Viz.Graph.Utils (edgesFilter) import Gargantext.Core.Viz.Graph.Bridgeness (bridgeness, Partitions, ToComId(..)) import Gargantext.Core.Viz.Graph.Index (createIndices, toIndex, map2mat, mat2map, Index, MatrixShape(..)) import Gargantext.Core.Viz.Graph.Tools.IGraph (mkGraphUfromEdges, spinglass) import Gargantext.Core.Viz.Graph.Types (ClusterNode) import Gargantext.Prelude -- import qualified Graph.BAC.ProxemyOptim as BAC import IGraph.Random -- (Gen(..)) import qualified Data.HashMap.Strict as HashMap import qualified Data.List as List import qualified Data.Map as Map import qualified Data.Set as Set import qualified Data.Vector.Storable as Vec import qualified IGraph as Igraph import qualified IGraph.Algorithms.Layout as Layout ------------------------------------------------------------- defaultClustering :: Map (Int, Int) Double -> IO [ClusterNode] -- defaultClustering x = pure $ BAC.defaultClustering x defaultClustering x = spinglass 1 x ------------------------------------------------------------- type Threshold = Double cooc2graph' :: Ord t => Distance -> Double -> Map (t, t) Int -> Map (Index, Index) Double cooc2graph' distance threshold myCooc = Map.filter (> threshold) $ mat2map $ measure distance $ case distance of Conditional -> map2mat Triangle 0 tiSize Distributional -> map2mat Square 0 tiSize $ Map.filter (> 1) myCooc' where (ti, _) = createIndices myCooc tiSize = Map.size ti myCooc' = toIndex ti myCooc data PartitionMethod = Louvain | Spinglass -- | Bac -- | coocurrences graph computation cooc2graphWith :: PartitionMethod -> Distance -> Threshold -> HashMap (NgramsTerm, NgramsTerm) Int -> IO Graph cooc2graphWith Louvain = undefined cooc2graphWith Spinglass = cooc2graphWith' (spinglass 1) -- cooc2graphWith Bac = cooc2graphWith' (\x -> pure $ BAC.defaultClustering x) cooc2graphWith' :: ToComId a => Partitions a -> Distance -> Threshold -> HashMap (NgramsTerm, NgramsTerm) Int -> IO Graph cooc2graphWith' doPartitions distance threshold myCooc = do let (distanceMap, diag, ti) = doDistanceMap distance threshold myCooc nodesApprox :: Int nodesApprox = n' where (as, bs) = List.unzip $ Map.keys distanceMap n' = Set.size $ Set.fromList $ as <> bs {- -- Debug saveAsFileDebug "debug/distanceMap" distanceMap printDebug "similarities" similarities -} partitions <- if (Map.size distanceMap > 0) then doPartitions distanceMap else panic "Text.Flow: DistanceMap is empty" let bridgeness' = bridgeness (fromIntegral nodesApprox) partitions distanceMap confluence' = confluence (Map.keys bridgeness') 3 True False pure $ data2graph (Map.toList $ Map.mapKeys unNgramsTerm ti) diag bridgeness' confluence' partitions doDistanceMap :: Distance -> Threshold -> HashMap (NgramsTerm, NgramsTerm) Int -> ( Map (Int,Int) Double , Map (Index, Index) Int , Map NgramsTerm Index ) doDistanceMap Distributional threshold myCooc = (distanceMap, toIndex ti diag, ti) where -- TODO remove below (diag, theMatrix) = Map.partitionWithKey (\(x,y) _ -> x == y) $ Map.fromList $ HashMap.toList myCooc (ti, _it) = createIndices theMatrix tiSize = Map.size ti {- matCooc = case distance of -- Shape of the Matrix Conditional -> map2mat Triangle 0 tiSize Distributional -> map2mat Square 0 tiSize $ toIndex ti theMatrix similarities = measure distance matCooc -} similarities = measure Distributional $ map2mat Square 0 tiSize $ toIndex ti theMatrix links = round (let n :: Double = fromIntegral tiSize in n * log n) distanceMap = Map.fromList $ List.take links $ List.sortOn snd $ Map.toList $ edgesFilter $ Map.filter (> threshold) $ mat2map similarities doDistanceMap Conditional _threshold myCooc = (distanceMap, toIndex ti myCooc', ti) where myCooc' = Map.fromList $ HashMap.toList myCooc (ti, _it) = createIndices myCooc' -- tiSize = Map.size ti -- links = round (let n :: Double = fromIntegral tiSize in n * log n) distanceMap = toIndex ti $ Map.fromList -- $ List.take links -- $ List.sortOn snd $ HashMap.toList -- $ HashMap.filter (> threshold) $ conditional myCooc ---------------------------------------------------------- -- | From data to Graph type Occurrences = Map (Int, Int) Int data2graph :: ToComId a => [(Text, Int)] -> Occurrences -> Map (Int, Int) Double -> Map (Int, Int) Double -> [a] -> Graph data2graph labels occurences bridge conf partitions = Graph { _graph_nodes = nodes , _graph_edges = edges , _graph_metadata = Nothing } where community_id_by_node_id = Map.fromList $ map nodeId2comId partitions nodes = map (setCoord ForceAtlas labels bridge) [ (n, Node { node_size = maybe 0 identity (Map.lookup (n,n) occurences) , node_type = Terms -- or Unknown , node_id = cs (show n) , node_label = l , node_x_coord = 0 , node_y_coord = 0 , node_attributes = Attributes { clust_default = maybe 0 identity (Map.lookup n community_id_by_node_id) } , node_children = [] } ) | (l, n) <- labels , Set.member n $ Set.fromList $ List.concat $ map (\((s,t),d) -> if d > 0 && s /=t then [s,t] else []) $ Map.toList bridge ] edges = [ Edge { edge_source = cs (show s) , edge_target = cs (show t) , edge_weight = weight , edge_confluence = maybe 0 identity $ Map.lookup (s,t) conf -- , edge_confluence = maybe (panic "E: data2graph edges") identity $ Map.lookup (s,t) conf , edge_id = cs (show i) } | (i, ((s,t), weight)) <- zip ([0..]::[Integer] ) (Map.toList bridge) , s /= t , weight > 0 ] ------------------------------------------------------------------------ data Layout = KamadaKawai | ACP | ForceAtlas setCoord' :: (Int -> (Double, Double)) -> (Int, Node) -> Node setCoord' f (i,n) = n { node_x_coord = x, node_y_coord = y } where (x,y) = f i -- | ACP setCoord :: Ord a => Layout -> [(a, Int)] -> Map (Int, Int) Double -> (Int, Node) -> Node setCoord l labels m (n,node) = node { node_x_coord = x , node_y_coord = y } where (x,y) = getCoord l labels m n getCoord :: Ord a => Layout -> [(a, Int)] -> Map (Int, Int) Double -> Int -> (Double, Double) getCoord KamadaKawai _ _m _n = undefined -- layout m n getCoord ForceAtlas _ _ n = (sin d, cos d) where d = fromIntegral n getCoord ACP labels m n = to2d $ maybe (panic "Graph.Tools no coordinate") identity $ Map.lookup n $ pcaReduceTo (Dimension 2) $ mapArray labels m where to2d :: Vec.Vector Double -> (Double, Double) to2d v = (x',y') where ds = take 2 $ Vec.toList v x' = head' "to2d" ds y' = last' "to2d" ds mapArray :: Ord a => [(a, Int)] -> Map (Int, Int) Double -> Map Int (Vec.Vector Double) mapArray items m' = Map.fromList [ toVec n' ns m' | n' <- ns ] where ns = map snd items toVec :: Int -> [Int] -> Map (Int,Int) Double -> (Int, Vec.Vector Double) toVec n' ns' m' = (n', Vec.fromList $ map (\n'' -> maybe 0 identity $ Map.lookup (n',n'') m') ns') ------------------------------------------------------------------------ -- | KamadaKawai Layout -- TODO TEST: check labels, nodeId and coordinates layout :: Map (Int, Int) Double -> Int -> Gen -> (Double, Double) layout m n gen = maybe (panic "") identity $ Map.lookup n $ coord where coord :: (Map Int (Double,Double)) coord = Map.fromList $ List.zip (Igraph.nodes g) $ (Layout.layout g p gen) --p = Layout.defaultLGL p = Layout.kamadaKawai g = mkGraphUfromEdges $ map fst $ List.filter (\e -> snd e > 0) $ Map.toList m ----------------------------------------------------------------------------- -- MISC Tools cooc2graph'' :: Ord t => Distance -> Double -> Map (t, t) Int -> Map (Index, Index) Double cooc2graph'' distance threshold myCooc = neighbourMap where (ti, _) = createIndices myCooc myCooc' = toIndex ti myCooc matCooc = map2mat Triangle 0 (Map.size ti) $ Map.filter (> 1) myCooc' distanceMat = measure distance matCooc neighbourMap = filterByNeighbours threshold $ mat2map distanceMat -- Quentin filterByNeighbours :: Double -> Map (Index, Index) Double -> Map (Index, Index) Double filterByNeighbours threshold distanceMap = filteredMap where indexes :: [Index] indexes = List.nub $ List.concat $ map (\(idx,idx') -> [idx,idx'] ) $ Map.keys distanceMap filteredMap :: Map (Index, Index) Double filteredMap = Map.fromList $ List.concat $ map (\idx -> let selected = List.reverse $ List.sortOn snd $ Map.toList $ Map.filter (> 0) $ Map.filterWithKey (\(from,_) _ -> idx == from) distanceMap in List.take (round threshold) selected ) indexes