{-| Module : Gargantext.Graph.Distances.Matrix Description : Copyright : (c) CNRS, 2017-Present License : AGPL + CECILL v3 Maintainer : team@gargantext.org Stability : experimental Portability : POSIX Motivation and definition of the @Conditional@ distance. Implementation use Accelerate library : * Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover. [Accelerating Haskell Array Codes with Multicore GPUs][CKLM+11]. In _DAMP '11: Declarative Aspects of Multicore Programming_, ACM, 2011. * Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and Ben Lippmeier. [Optimising Purely Functional GPU Programs][MCKL13]. In _ICFP '13: The 18th ACM SIGPLAN International Conference on Functional Programming_, ACM, 2013. * Robert Clifton-Everest, Trevor L. McDonell, Manuel M. T. Chakravarty, and Gabriele Keller. [Embedding Foreign Code][CMCK14]. In _PADL '14: The 16th International Symposium on Practical Aspects of Declarative Languages_, Springer-Verlag, LNCS, 2014. * Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, and Ryan R. Newton. [Type-safe Runtime Code Generation: Accelerate to LLVM][MCGN15]. In _Haskell '15: The 8th ACM SIGPLAN Symposium on Haskell_, ACM, 2015. -} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE ScopedTypeVariables #-} module Gargantext.Viz.Graph.Distances.Matrice where import Data.Array.Accelerate import Data.Array.Accelerate.Interpreter (run) import Data.Array.Accelerate.Smart import Data.Array.Accelerate.Type import Data.Array.Accelerate.Array.Sugar (fromArr, Array, Z) import Data.Maybe (Maybe(Just)) import qualified Gargantext.Prelude as P import qualified Data.Array.Accelerate.Array.Representation as Repr import Gargantext.Text.Metrics.Count ----------------------------------------------------------------------- -- Test perf. distriTest = distributional $ myMat 100 ----------------------------------------------------------------------- vector :: Int -> (Array (Z :. Int) Int) vector n = fromList (Z :. n) [0..n] matrix :: Elt c => Int -> [c] -> Matrix c matrix n l = fromList (Z :. n :. n) l myMat :: Int -> Matrix Int myMat n = matrix n [1..] -- | Two ways to get the rank (as documentation) rank :: (Matrix a) -> Int rank m = arrayRank $ arrayShape m ----------------------------------------------------------------------- -- | Dimension of a square Matrix -- How to force use with SquareMatrix ? type Dim = Int dim :: (Matrix a) -> Dim dim m = n where Z :. _ :. n = arrayShape m -- == indexTail (arrayShape m) proba :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double) proba r mat = zipWith (/) mat (mkSum r mat) mkSum :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double) mkSum r mat = replicate (constant (Z :. (r :: Int) :. All)) $ sum mat -- divByDiag divByDiag :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double) divByDiag d mat = zipWith (/) mat (replicate (constant (Z :. (d :: Int) :. All)) $ diag mat) where diag :: Elt e => Acc (Matrix e) -> Acc (Vector e) diag m = backpermute (indexTail (shape m)) (lift1 (\(Z :. x) -> (Z :. x :. (x :: Exp Int)))) m -- | Conditional Distance {- Metric Specificity and genericity: select terms N termes Ni : occ de i Nij : cooc i et j P(i|j)=Nij/Nj Probability to get i given j Gen(i) : 1/(N-1)*Sum(j!=i, P(i|j)) : Genericity of i Spec(i) : 1/(N-1)*Sum( j!=i, P(j|i)) : Specificity of j Inclusion (i) = Gen(i)+Spec(i) Genericity score = Gen(i)- Spec(i) ---- Compute genericity/specificity: P(j|i) = N(ij) / N(ii) P(i|j) = N(ij) / N(jj) Gen(i) = sum P(i|j) | j /= i) / (N-1) Spec(i) = sum P(j|i) | i /= j) / (N-1) Genericity(i) = (Gen(i) - Spe(i)) / 2 Inclusion(i) = (Spec(i) + Gen(i)) / 2 -} -- M - M-1 = 0 data SquareMatrix = SymetricMatrix | NonSymetricMatrix type SymetricMatrix = Matrix type NonSymetricMatrix = Matrix -- | Compute genericity/specificity: ---- | P(i|j) = N(ij) / N(jj) p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e) p_ij m = zipWith (/) m (n_jj m) where n_jj :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e) n_jj m = backpermute (shape m) (lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int)) -> (ifThenElse (i < j) (lift (Z :. j :. j)) (lift (Z :. i :. i)) :: Exp DIM2) ) ) m -- P(j|i) = N(ij) / N(ii) p_ji :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e) p_ji m = zipWith (/) m (n_ii m) where n_ii :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e) n_ii m = backpermute (shape m) (lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int)) -> (Z :. i :. i) ) ) m type Matrix' a = Acc (Matrix a) type InclusionExclusion = Double type SpecificityGenericity = Double miniMax :: Acc (Matrix Double) -> Acc (Matrix Double) miniMax m = map (\x -> ifThenElse (x > miniMax') x 0) m where miniMax' = (the $ minimum $ maximum m) -- | Conditional distance (basic version) conditional :: Matrix Int -> Matrix Double conditional m = run (miniMax $ proba (dim m) $ map fromIntegral $ use m) -- | Conditional distance (advanced version) conditional' :: Matrix Int -> (Matrix InclusionExclusion, Matrix SpecificityGenericity) conditional' m = (run $ ie $ map fromIntegral $ use m, run $ sg $ map fromIntegral $ use m) where ie :: Matrix' Double -> Matrix' Double ie mat = map (\x -> x / (2*n-1)) $ zipWith (+) (xs mat) (ys mat) sg :: Acc (Matrix Double) -> Acc (Matrix Double) sg mat = map (\x -> x / (2*n-1)) $ zipWith (-) (xs mat) (ys mat) n :: Exp Double n = P.fromIntegral r r :: Dim r = dim m xs :: Matrix' Double -> Matrix' Double xs mat = zipWith (-) (proba r mat) (mkSum r $ proba r mat) ys :: Acc (Matrix Double) -> Acc (Matrix Double) ys mat = zipWith (-) (proba r mat) (mkSum r $ transpose $ proba r mat) ----------------------------------------------------------------------- -- | Distributional Distance distributional :: Matrix Int -> Matrix Double distributional m = run $ miniMax $ ri (map fromIntegral $ use m) where n = dim m filter m = zipWith (\a b -> max a b) m (transpose m) ri mat = zipWith (/) mat1 mat2 where mat1 = mkSum n $ zipWith min (mi mat) (mi $ transpose mat) mat2 = mkSum n mat mi m' = zipWith (\a b -> max (log $ a/b) 0) m' $ zipWith (/) (crossProduct m') (total m') total m'' = replicate (constant (Z :. n :. n)) $ fold (+) 0 $ fold (+) 0 m'' crossProduct m = zipWith (*) (cross m ) (cross (transpose m)) cross mat = zipWith (-) (mkSum n mat) (mat) int2double :: Matrix Int -> Matrix Double int2double m = run (map fromIntegral $ use m) incExcSpeGen' :: Matrix Int -> (Vector Double, Vector Double) incExcSpeGen' m = (run' ie m, run' sg m) where run' fun mat = run $ fun $ map fromIntegral $ use mat ie :: Acc (Matrix Double) -> Acc (Vector Double) ie mat = zipWith (-) (pV mat) (pH mat) -- sg :: Acc (Matrix Double) -> Acc (Vector Double) sg mat = zipWith (+) (pV mat) (pH mat) n :: Exp Double n = constant (P.fromIntegral (dim m) :: Double) pV :: Acc (Matrix Double) -> Acc (Vector Double) pV mat = map (\x -> (x-1)/(n-1)) $ sum $ p_ij mat pH :: Acc (Matrix Double) -> Acc (Vector Double) pH mat = map (\x -> (x-1)/(n-1)) $ sum $ p_ji mat incExcSpeGen_proba :: Matrix Int -> Matrix Double incExcSpeGen_proba m = run' pro m where run' fun mat = run $ fun $ map fromIntegral $ use mat pro mat = p_ij mat