import Gargantext.Core.Viz.Graph.Bridgeness (bridgeness, Partitions, ToComId(..))
import Gargantext.Core.Viz.Graph.Index (createIndices, toIndex, map2mat, mat2map, Index, MatrixShape(..))
import Gargantext.Core.Viz.Graph.Tools.IGraph (mkGraphUfromEdges, spinglass)
+import Gargantext.Core.Viz.Graph.Types (ClusterNode)
import Gargantext.Prelude
-import Graph.Types (ClusterNode)
-import qualified Graph.BAC.ProxemyOptim as BAC
+-- import qualified Graph.BAC.ProxemyOptim as BAC
import IGraph.Random -- (Gen(..))
import qualified Data.HashMap.Strict as HashMap
import qualified Data.List as List
-------------------------------------------------------------
defaultClustering :: Map (Int, Int) Double -> IO [ClusterNode]
-defaultClustering x = pure $ BAC.defaultClustering x
+-- defaultClustering x = pure $ BAC.defaultClustering x
+defaultClustering x = spinglass 1 x
-------------------------------------------------------------
type Threshold = Double
myCooc' = toIndex ti myCooc
-data PartitionMethod = Louvain | Spinglass
+data PartitionMethod = Louvain | Spinglass -- | Bac
-- | coocurrences graph computation
cooc2graphWith :: PartitionMethod
-> Threshold
-> HashMap (NgramsTerm, NgramsTerm) Int
-> IO Graph
-cooc2graphWith Louvain = undefined -- TODO use IGraph bindings
+cooc2graphWith Louvain = undefined
cooc2graphWith Spinglass = cooc2graphWith' (spinglass 1)
-
-cooc2graph'' :: Ord t => Distance
- -> Double
- -> Map (t, t) Int
- -> Map (Index, Index) Double
-cooc2graph'' distance threshold myCooc = neighbourMap
- where
- (ti, _) = createIndices myCooc
- myCooc' = toIndex ti myCooc
- matCooc = map2mat Triangle 0 (Map.size ti) $ Map.filter (> 1) myCooc'
- distanceMat = measure distance matCooc
- neighbourMap = filterByNeighbours threshold
- $ mat2map distanceMat
+-- cooc2graphWith Bac = cooc2graphWith' (\x -> pure $ BAC.defaultClustering x)
--- Quentin
-filterByNeighbours :: Double -> Map (Index, Index) Double -> Map (Index, Index) Double
-filterByNeighbours threshold distanceMap = filteredMap
- where
- indexes :: [Index]
- indexes = List.nub $ List.concat $ map (\(idx,idx') -> [idx,idx'] ) $ Map.keys distanceMap
- filteredMap :: Map (Index, Index) Double
- filteredMap = Map.fromList
- $ List.concat
- $ map (\idx ->
- let selected = List.reverse
- $ List.sortOn snd
- $ Map.toList
- $ Map.filter (> 0)
- $ Map.filterWithKey (\(from,_) _ -> idx == from) distanceMap
- in List.take (round threshold) selected
- ) indexes
-
-
-doDistanceMap :: Distance
- -> Threshold
- -> HashMap (NgramsTerm, NgramsTerm) Int
- -> (Map (Int,Int) Double, Map (Index, Index) Int, Map NgramsTerm Index)
-doDistanceMap distance threshold myCooc = (distanceMap, myCooc', ti)
- where
- -- TODO remove below
- theMatrix = Map.fromList
- $ HashMap.toList myCooc
-
- (ti, _) = createIndices theMatrix
- tiSize = Map.size ti
- myCooc' = toIndex ti theMatrix
- matCooc = case distance of -- Shape of the Matrix
- Conditional -> map2mat Triangle 0 tiSize
- Distributional -> map2mat Square 0 tiSize
- $ case distance of -- Removing the Diagonal ?
- Conditional -> Map.filterWithKey (\(a,b) _ -> a /= b)
- Distributional -> identity
- $ Map.filter (>1) myCooc'
-
- similarities = measure distance matCooc
- links = round (let n :: Double = fromIntegral tiSize in n * log n)
-
- distanceMap = Map.fromList $ List.take links
- $ List.sortOn snd
- $ Map.toList
- $ case distance of
- Conditional -> Map.filter (> threshold)
- Distributional -> Map.filter (> 0)
- $ mat2map similarities
-
cooc2graphWith' :: ToComId a
=> Partitions a
-> Distance
-> IO Graph
cooc2graphWith' doPartitions distance threshold myCooc = do
let
- (distanceMap, myCooc', ti) = doDistanceMap distance threshold myCooc
+ (distanceMap, diag, ti) = doDistanceMap distance threshold myCooc
nodesApprox :: Int
nodesApprox = n'
confluence' = confluence (Map.keys bridgeness') 3 True False
pure $ data2graph (Map.toList $ Map.mapKeys unNgramsTerm ti)
- myCooc' bridgeness' confluence' partitions
+ diag bridgeness' confluence' partitions
+
+
+
+doDistanceMap :: Distance
+ -> Threshold
+ -> HashMap (NgramsTerm, NgramsTerm) Int
+ -> ( Map (Int,Int) Double
+ , Map (Index, Index) Int
+ , Map NgramsTerm Index
+ )
+doDistanceMap distance threshold myCooc = (distanceMap, toIndex ti diag, ti)
+ where
+ -- TODO remove below
+ (diag, theMatrix) = Map.partitionWithKey (\(x,y) _ -> x == y)
+ $ Map.fromList
+ $ HashMap.toList myCooc
+
+ (ti, _it) = createIndices theMatrix
+ tiSize = Map.size ti
+
+ matCooc = case distance of -- Shape of the Matrix
+ Conditional -> map2mat Triangle 0 tiSize
+ Distributional -> map2mat Square 0 tiSize
+ {-$ case distance of -- Removing the Diagonal ?
+ Conditional -> Map.filterWithKey (\(a,b) _ -> a /= b)
+ Distributional -> Map.filterWithKey (\(a,b) _ -> a /= b)
+ -}
+ $ toIndex ti theMatrix
+
+ similarities = measure distance matCooc
+ links = round (let n :: Double = fromIntegral tiSize in n * log n)
+
+ distanceMap = Map.fromList
+ $ List.take links
+ $ List.sortOn snd
+ $ Map.toList
+ $ Map.filter (> threshold)
+ $ mat2map similarities
+
+
------------------------------------------------------------------------
----------------------------------------------------------
-- | From data to Graph
+
+type Occurrences = Map (Int, Int) Int
+
data2graph :: ToComId a
=> [(Text, Int)]
- -> Map (Int, Int) Int
+ -> Occurrences
-> Map (Int, Int) Double
-> Map (Int, Int) Double
-> [a]
-> Graph
-data2graph labels coocs bridge conf partitions = Graph { _graph_nodes = nodes
+data2graph labels occurences bridge conf partitions = Graph { _graph_nodes = nodes
, _graph_edges = edges
, _graph_metadata = Nothing }
where
- community_id_by_node_id = Map.fromList $ map nodeId2comId partitions
+ community_id_by_node_id = Map.fromList
+ $ map nodeId2comId partitions
nodes = map (setCoord ForceAtlas labels bridge)
- [ (n, Node { node_size = maybe 0 identity (Map.lookup (n,n) coocs)
+ [ (n, Node { node_size = maybe 0 identity (Map.lookup (n,n) occurences)
, node_type = Terms -- or Unknown
, node_id = cs (show n)
, node_label = l
--p = Layout.defaultLGL
p = Layout.kamadaKawai
g = mkGraphUfromEdges $ map fst $ List.filter (\e -> snd e > 0) $ Map.toList m
+
-----------------------------------------------------------------------------
------------------------------------------------------------------------------
------------------------------------------------------------------------------
--- Debug
-{-
--- measure logDistributional
-dataDebug = map2mat Square (0::Int) 19 dataBug'
+-- MISC Tools
+cooc2graph'' :: Ord t => Distance
+ -> Double
+ -> Map (t, t) Int
+ -> Map (Index, Index) Double
+cooc2graph'' distance threshold myCooc = neighbourMap
+ where
+ (ti, _) = createIndices myCooc
+ myCooc' = toIndex ti myCooc
+ matCooc = map2mat Triangle 0 (Map.size ti) $ Map.filter (> 1) myCooc'
+ distanceMat = measure distance matCooc
+ neighbourMap = filterByNeighbours threshold
+ $ mat2map distanceMat
+
+-- Quentin
+filterByNeighbours :: Double -> Map (Index, Index) Double -> Map (Index, Index) Double
+filterByNeighbours threshold distanceMap = filteredMap
+ where
+ indexes :: [Index]
+ indexes = List.nub $ List.concat $ map (\(idx,idx') -> [idx,idx'] ) $ Map.keys distanceMap
+ filteredMap :: Map (Index, Index) Double
+ filteredMap = Map.fromList
+ $ List.concat
+ $ map (\idx ->
+ let selected = List.reverse
+ $ List.sortOn snd
+ $ Map.toList
+ $ Map.filter (> 0)
+ $ Map.filterWithKey (\(from,_) _ -> idx == from) distanceMap
+ in List.take (round threshold) selected
+ ) indexes
+
+
+
+
-dataBug' :: Map (Int, Int) Int
-dataBug' = Map.fromList [((0,0),28),((0,1),8),((0,2),6),((0,3),2),((0,5),4),((0,6),4),((0,7),2),((0,9),7),((0,10),4),((0,13),4),((0,14),2),((0,15),5),((0,16),8),((0,17),3),((1,1),28),((1,2),6),((1,3),7),((1,4),5),((1,5),7),((1,6),5),((1,7),2),((1,9),6),((1,10),7),((1,11),5),((1,13),6),((1,15),6),((1,16),14),((1,18),4),((2,2),39),((2,3),5),((2,4),4),((2,5),3),((2,6),4),((2,7),4),((2,8),3),((2,9),17),((2,10),4),((2,11),8),((2,12),2),((2,13),15),((2,14),4),((2,15),5),((2,16),21),((2,18),4),((3,3),48),((3,4),10),((3,5),7),((3,6),3),((3,7),7),((3,8),6),((3,9),12),((3,10),9),((3,11),8),((3,12),5),((3,13),15),((3,14),5),((3,15),9),((3,16),17),((3,18),4),((4,4),33),((4,5),2),((4,6),5),((4,7),7),((4,8),4),((4,9),6),((4,10),12),((4,11),8),((4,12),3),((4,13),16),((4,14),4),((4,15),4),((4,16),5),((4,17),2),((4,18),12),((5,5),27),((5,6),2),((5,8),3),((5,9),12),((5,10),6),((5,11),9),((5,13),4),((5,14),2),((5,15),7),((5,16),11),((5,18),4),((6,6),34),((6,7),4),((6,8),3),((6,9),12),((6,10),8),((6,11),2),((6,12),5),((6,13),6),((6,14),6),((6,15),5),((6,16),22),((6,17),8),((6,18),4),((7,7),27),((7,8),2),((7,9),6),((7,10),2),((7,11),4),((7,13),13),((7,15),2),((7,16),8),((7,17),6),((7,18),4),((8,8),30),((8,9),9),((8,10),6),((8,11),9),((8,12),6),((8,13),3),((8,14),3),((8,15),4),((8,16),15),((8,17),3),((8,18),5),((9,9),69),((9,10),9),((9,11),22),((9,12),15),((9,13),18),((9,14),10),((9,15),14),((9,16),48),((9,17),6),((9,18),9),((10,10),39),((10,11),15),((10,12),5),((10,13),11),((10,14),2),((10,15),4),((10,16),19),((10,17),3),((10,18),11),((11,11),48),((11,12),9),((11,13),20),((11,14),2),((11,15),13),((11,16),29),((11,18),13),((12,12),30),((12,13),4),((12,15),5),((12,16),16),((12,17),6),((12,18),2),((13,13),65),((13,14),10),((13,15),14),((13,16),23),((13,17),6),((13,18),10),((14,14),25),((14,16),9),((14,17),3),((14,18),3),((15,15),38),((15,16),17),((15,18),4),((16,16),99),((16,17),11),((16,18),14),((17,17),29),((18,18),23)]
--}