instance Instantiable sem => Instantiable (SomeData sem) where
f .@ x = SomeData (f :@ x)
--- Functionable
+-- Unabstractable
instance
( Abstractable sem
, Instantiable sem
, Varable sem
) =>
- Functionable (SomeData sem)
+ Unabstractable (SomeData sem)
where
- ($) = lam (\f -> lam (\x -> f .@ x))
- (.) = lam (\f -> lam (\g -> lam (\x -> f .@ (g .@ x))))
+ ap = lam (\abc -> lam (\ab -> lam (\a -> abc .@ a .@ (ab .@ a))))
const = lam (\x -> lam (\_y -> x))
- flip = lam (\f -> lam (\x -> lam (\y -> f .@ y .@ x)))
id = lam (\x -> x)
+ (.) = lam (\f -> lam (\g -> lam (\x -> f .@ (g .@ x))))
+ flip = lam (\f -> lam (\x -> lam (\y -> f .@ y .@ x)))
+ ($) = lam (\f -> lam (\x -> f .@ x))
-- Anythingable
data instance Data Anythingable sem a where
import Control.Monad (Monad (..))
import Data.Bool (Bool (..))
import Data.Eq (Eq (..))
-import Data.Function ((.))
import Data.Functor (Functor (..))
import Data.Kind (Type)
import Text.Show (Show (..))
import Unsafe.Coerce (unsafeCoerce)
+import qualified Data.Function as Fun
import Symantic.Syntaxes.Classes (Abstractable (..), Syntax, Syntaxes, Instantiable (..), Unabstractable (..))
instance
( forall sem. Syntaxes syns sem => Functor sem
- ) =>
- Functor (Forall syns)
- where
+ ) => Functor (Forall syns) where
fmap f (Forall sem) = Forall (fmap f sem)
a <$ (Forall sem) = Forall (a <$ sem)
instance
( forall sem. Syntaxes syns sem => Applicative sem
, Functor (Forall syns)
- ) =>
- Applicative (Forall syns)
- where
+ ) => Applicative (Forall syns) where
pure a = Forall (pure a)
liftA2 f (Forall a) (Forall b) = Forall (liftA2 f a b)
(<*>) (Forall f) (Forall a) = Forall ((<*>) f a)
instance
( forall sem. Syntaxes syns sem => Monad sem
, Applicative (Forall syns)
- ) =>
- Monad (Forall syns)
- where
+ ) => Monad (Forall syns) where
(>>=) (Forall sa) f = Forall (sa >>= \a -> case f a of Forall sb -> sb)
return = pure
(>>) = (*>)
-- Safe here because (a :: sem a) and (b :: sem b) share the same 'sem'.
forallSem :: sem a -> Forall syns a
forallSem a = Forall (unsafeCoerce a)
+instance
+ ( forall sem. Syntaxes syns sem => Unabstractable sem
+ ) => Unabstractable (Forall syns) where
+ ap = Forall ap
+ const = Forall const
+ id = Forall id
+ (.) = Forall (.)
+ flip = Forall flip
+ ($) = Forall ($)
-- * Type 'PerSyntax'
data PerSyntax :: [Syntax] -> (Syntax -> Type) -> Type where
instance {-# OVERLAPS #-} PerSyntaxable (syn ': syns) syn where
perSyntax = PerSyntaxZ
instance PerSyntaxable syns syn => PerSyntaxable (skipSyn ': syns) syn where
- perSyntax = PerSyntaxS . perSyntax
+ perSyntax = PerSyntaxS Fun.. perSyntax
Fun.. showString " "
Fun.. showString name
f .@ x = ViewerApp f x
+instance Unabstractable Viewer where
+ ap = ViewerInfix (infixL 4) "(<*>)" "<*>"
+ const = "const"
+ id = "id"
+ (.) = ViewerInfix (infixR 9) "(.)" "."
+ flip = flip
+ ($) = ViewerInfix (infixR 0) "($)" "$"
instance Varable Viewer where
var = Fun.id
instance Anythingable Viewer
sem a ->
sem b
--- ** Class 'Functionable'
-class Functionable sem where
+-- ** Class 'Unabstractable'
+-- | All operations in lambda calculus can be encoded
+-- via abstraction elimination into the SK calculus
+-- as binary trees whose leaves are one
+-- of the three symbols S ('ap') and K ('const').
+class Unabstractable sem where
+ -- | S
+ ap :: sem ((a -> b -> c) -> (a -> b) -> a -> c)
+ -- | K
const :: sem (a -> b -> a)
- flip :: sem ((a -> b -> c) -> b -> a -> c)
+ -- | I
id :: sem (a -> a)
+ -- | B
(.) :: sem ((b -> c) -> (a -> b) -> a -> c)
infixr 9 .
+ -- | C
+ flip :: sem ((a -> b -> c) -> b -> a -> c)
($) :: sem ((a -> b) -> a -> b)
infixr 0 $
+
+ ap = liftDerived ap
const = liftDerived const
- flip = liftDerived flip
id = liftDerived id
(.) = liftDerived (.)
+ flip = liftDerived flip
($) = liftDerived ($)
+
+ default ap ::
+ FromDerived Unabstractable sem =>
+ sem ((a -> b -> c) -> (a -> b) -> a -> c)
default const ::
- FromDerived Functionable sem =>
+ FromDerived Unabstractable sem =>
sem (a -> b -> a)
- default flip ::
- FromDerived Functionable sem =>
- sem ((a -> b -> c) -> b -> a -> c)
default id ::
- FromDerived Functionable sem =>
+ FromDerived Unabstractable sem =>
sem (a -> a)
default (.) ::
- FromDerived Functionable sem =>
+ FromDerived Unabstractable sem =>
sem ((b -> c) -> (a -> b) -> a -> c)
+ default flip ::
+ FromDerived Unabstractable sem =>
+ sem ((a -> b -> c) -> b -> a -> c)
default ($) ::
- FromDerived Functionable sem =>
+ FromDerived Unabstractable sem =>
sem ((a -> b) -> a -> b)
-- * Class 'Anythingable'