]> Git — Sourcephile - haskell/symantic-parser.git/blob - src/Symantic/Parser/Grammar/Combinators.hs
Add more Comb -> Instr translations
[haskell/symantic-parser.git] / src / Symantic / Parser / Grammar / Combinators.hs
1 {-# LANGUAGE DefaultSignatures #-}
2 -- The default type signature of type class methods are changed to introduce a Liftable constraint and the same type class but on the 'Output' repr, this setup avoids to define the method with boilerplate code when its default definition with lift* and 'trans' does what is expected by an instance of the type class. This is almost as explained in: https://ro-che.info/articles/2016-02-03-finally-tagless-boilerplate
3 {-# LANGUAGE TemplateHaskell #-}
4 module Symantic.Parser.Grammar.Combinators where
5
6 import Data.Bool (Bool(..), not, (||))
7 import Data.Char (Char)
8 import Data.Either (Either(..))
9 import Data.Eq (Eq(..))
10 import Data.Function ((.), flip, const)
11 import Data.Int (Int)
12 import Data.Maybe (Maybe(..))
13 import Data.String (String)
14 import Language.Haskell.TH (TExpQ)
15 import qualified Data.Functor as Functor
16 import qualified Data.List as List
17
18 import qualified Symantic.Univariant.Trans as Sym
19 import qualified Symantic.Parser.Staging as Hask
20
21 -- * Class 'Applicable'
22 -- | This is like the usual 'Functor' and 'Applicative' type classes from the @base@ package, but using @('Hask.Haskell' a)@ instead of just @(a)@ to be able to use and pattern match on some usual terms of type @(a)@ (like 'Hask.id') and thus apply some optimizations.
23 -- @(repr)@ , for "representation", is the usual tagless-final abstraction over the many semantics that this syntax (formed by the methods of type class like this one) will be interpreted.
24 class Applicable repr where
25 -- | @(a2b '<$>' ra)@ parses like @(ra)@ but maps its returned value with @(a2b)@.
26 (<$>) :: Hask.Haskell (a -> b) -> repr a -> repr b
27 (<$>) f = (pure f <*>)
28
29 -- | Like '<$>' but with its arguments 'flip'-ped.
30 (<&>) :: repr a -> Hask.Haskell (a -> b) -> repr b
31 (<&>) = flip (<$>)
32
33 -- | @(a '<$' rb)@ parses like @(rb)@ but discards its returned value by replacing it with @(a)@.
34 (<$) :: Hask.Haskell a -> repr b -> repr a
35 (<$) x = (pure x <*)
36
37 -- | @(ra '$>' b)@ parses like @(ra)@ but discards its returned value by replacing it with @(b)@.
38 ($>) :: repr a -> Hask.Haskell b -> repr b
39 ($>) = flip (<$)
40
41 -- | @('pure' a)@ parses the empty string, always succeeding in returning @(a)@.
42 pure :: Hask.Haskell a -> repr a
43 default pure ::
44 Sym.Liftable repr => Applicable (Sym.Output repr) =>
45 Hask.Haskell a -> repr a
46 pure = Sym.lift . pure
47
48 -- | @(ra2b '<*>' ra)@ parses sequentially @(ra2b)@ and then @(ra)@, and returns the application of the function returned by @(ra2b)@ to the value returned by @(ra)@.
49 (<*>) :: repr (a -> b) -> repr a -> repr b
50 default (<*>) ::
51 Sym.Liftable2 repr => Applicable (Sym.Output repr) =>
52 repr (a -> b) -> repr a -> repr b
53 (<*>) = Sym.lift2 (<*>)
54
55 -- | @('liftA2' a2b2c ra rb)@ parses sequentially @(ra)@ and then @(rb)@, and returns the application of @(a2b2c)@ to the values returned by those parsers.
56 liftA2 :: Hask.Haskell (a -> b -> c) -> repr a -> repr b -> repr c
57 liftA2 f x = (<*>) (f <$> x)
58
59 -- | @(ra '<*' rb)@ parses sequentially @(ra)@ and then @(rb)@, and returns like @(ra)@, discarding the return value of @(rb)@.
60 (<*) :: repr a -> repr b -> repr a
61 (<*) = liftA2 Hask.const
62
63 -- | @(ra '*>' rb)@ parses sequentially @(ra)@ and then @(rb)@, and returns like @(rb)@, discarding the return value of @(ra)@.
64 (*>) :: repr a -> repr b -> repr b
65 x *> y = (Hask.id <$ x) <*> y
66
67 -- | Like '<*>' but with its arguments 'flip'-ped.
68 (<**>) :: repr a -> repr (a -> b) -> repr b
69 (<**>) = liftA2 (Hask.flip Hask..@ (Hask.$))
70 {-
71 (<**>) :: repr a -> repr (a -> b) -> repr b
72 (<**>) = liftA2 (\a f -> f a)
73 -}
74 infixl 4 <$>, <&>, <$, $>, <*>, <*, *>, <**>
75
76 -- * Class 'Alternable'
77 class Alternable repr where
78 -- | @(rl '<|>' rr)@ parses @(rl)@ and return its return value or, if it fails, parses @(rr)@ from where @(rl)@ has left the input stream, and returns its return value.
79 (<|>) :: repr a -> repr a -> repr a
80 -- | @(empty)@ parses nothing, always failing to return a value.
81 empty :: repr a
82 -- | @('try' ra)@ records the input stream position, then parses like @(ra)@ and either returns its value it it succeeds or fails if it fails but with a reset of the input stream to the recorded position.
83 -- Generally used on the first alternative: @('try' rl '<|>' rr)@.
84 try :: repr a -> repr a
85 default (<|>) ::
86 Sym.Liftable2 repr => Alternable (Sym.Output repr) =>
87 repr a -> repr a -> repr a
88 default empty ::
89 Sym.Liftable repr => Alternable (Sym.Output repr) =>
90 repr a
91 default try ::
92 Sym.Liftable1 repr => Alternable (Sym.Output repr) =>
93 repr a -> repr a
94 (<|>) = Sym.lift2 (<|>)
95 empty = Sym.lift empty
96 try = Sym.lift1 try
97 -- | Like @('<|>')@ but with different returning types for the alternatives, and a return value wrapped in an 'Either' accordingly.
98 (<+>) :: Applicable repr => Alternable repr => repr a -> repr b -> repr (Either a b)
99 p <+> q = Hask.left <$> p <|> Hask.right <$> q
100 infixl 3 <|>, <+>
101
102 optionally :: Applicable repr => Alternable repr => repr a -> Hask.Haskell b -> repr b
103 optionally p x = p $> x <|> pure x
104
105 optional :: Applicable repr => Alternable repr => repr a -> repr ()
106 optional = flip optionally Hask.unit
107
108 option :: Applicable repr => Alternable repr => Hask.Haskell a -> repr a -> repr a
109 option x p = p <|> pure x
110
111 choice :: Alternable repr => [repr a] -> repr a
112 choice = List.foldr (<|>) empty
113 -- FIXME: Here hlint suggests to use Data.Foldable.asum,
114 -- but at this point there is no asum for our own (<|>)
115
116 maybeP :: Applicable repr => Alternable repr => repr a -> repr (Maybe a)
117 maybeP p = option Hask.nothing (Hask.just <$> p)
118
119 manyTill :: Applicable repr => Alternable repr => repr a -> repr b -> repr [a]
120 manyTill p end = let go = end $> Hask.nil <|> p <:> go in go
121
122 -- * Class 'Selectable'
123 class Selectable repr where
124 branch :: repr (Either a b) -> repr (a -> c) -> repr (b -> c) -> repr c
125 default branch ::
126 Sym.Liftable3 repr => Selectable (Sym.Output repr) =>
127 repr (Either a b) -> repr (a -> c) -> repr (b -> c) -> repr c
128 branch = Sym.lift3 branch
129
130 -- * Class 'Matchable'
131 class Matchable repr where
132 conditional ::
133 Eq a => [Hask.Haskell (a -> Bool)] -> [repr b] -> repr a -> repr b -> repr b
134 default conditional ::
135 Sym.Unliftable repr => Sym.Liftable2 repr => Matchable (Sym.Output repr) =>
136 Eq a => [Hask.Haskell (a -> Bool)] -> [repr b] -> repr a -> repr b -> repr b
137 conditional cs bs = Sym.lift2 (conditional cs (Sym.trans Functor.<$> bs))
138
139 match :: Eq a => [Hask.Haskell a] -> repr a -> (Hask.Haskell a -> repr b) -> repr b -> repr b
140 match as a a2b = conditional (Hask.eq Functor.<$> as) (a2b Functor.<$> as) a
141
142 -- * Class 'Foldable'
143 class Foldable repr where
144 chainPre :: repr (a -> a) -> repr a -> repr a
145 chainPost :: repr a -> repr (a -> a) -> repr a
146 default chainPre ::
147 Sym.Liftable2 repr => Foldable (Sym.Output repr) =>
148 repr (a -> a) -> repr a -> repr a
149 default chainPost ::
150 Sym.Liftable2 repr => Foldable (Sym.Output repr) =>
151 repr a -> repr (a -> a) -> repr a
152 chainPre = Sym.lift2 chainPre
153 chainPost = Sym.lift2 chainPost
154
155 {-
156 conditional :: Selectable repr => [(Hask.Haskell (a -> Bool), repr b)] -> repr a -> repr b -> repr b
157 conditional cs p def = match p fs qs def
158 where (fs, qs) = List.unzip cs
159 -}
160
161 -- * Class 'Charable'
162 class Charable repr where
163 satisfy :: Hask.Haskell (Char -> Bool) -> repr Char
164 default satisfy ::
165 Sym.Liftable repr => Charable (Sym.Output repr) =>
166 Hask.Haskell (Char -> Bool) -> repr Char
167 satisfy = Sym.lift . satisfy
168
169 -- * Class 'Lookable'
170 class Lookable repr where
171 look :: repr a -> repr a
172 negLook :: repr a -> repr ()
173 default look :: Sym.Liftable1 repr => Lookable (Sym.Output repr) => repr a -> repr a
174 default negLook :: Sym.Liftable1 repr => Lookable (Sym.Output repr) => repr a -> repr ()
175 look = Sym.lift1 look
176 negLook = Sym.lift1 negLook
177
178 {-# INLINE (<:>) #-}
179 infixl 4 <:>
180 (<:>) :: Applicable repr => repr a -> repr [a] -> repr [a]
181 (<:>) = liftA2 Hask.cons
182
183 sequence :: Applicable repr => [repr a] -> repr [a]
184 sequence = List.foldr (<:>) (pure Hask.nil)
185
186 traverse :: Applicable repr => (a -> repr b) -> [a] -> repr [b]
187 traverse f = sequence . List.map f
188 -- FIXME: Here hlint suggests to use Control.Monad.mapM,
189 -- but at this point there is no mapM for our own sequence
190
191 repeat :: Applicable repr => Int -> repr a -> repr [a]
192 repeat n p = traverse (const p) [1..n]
193
194 between :: Applicable repr => repr o -> repr c -> repr a -> repr a
195 between open close p = open *> p <* close
196
197 string :: Applicable repr => Charable repr => String -> repr String
198 string = traverse char
199
200 -- oneOf :: [Char] -> repr Char
201 -- oneOf cs = satisfy (makeQ (flip elem cs) [||\c -> $$(ofChars cs [||c||])||])
202
203 noneOf :: Charable repr => String -> repr Char
204 noneOf cs = satisfy (Hask.Haskell Hask.ValueCode{..})
205 where
206 value = Hask.Value (not . flip List.elem cs)
207 code = Hask.Code [||\c -> not $$(ofChars cs [||c||])||]
208
209 ofChars :: String -> TExpQ Char -> TExpQ Bool
210 ofChars = List.foldr (\c rest qc -> [|| c == $$qc || $$(rest qc) ||]) (const [||False||])
211
212 token :: Applicable repr => Alternable repr => Charable repr => String -> repr String
213 token = try . string
214
215 eof :: Charable repr => Lookable repr => repr ()
216 eof = negLook item
217
218 more :: Applicable repr => Charable repr => Lookable repr => repr ()
219 more = look (void item)
220
221 char :: Applicable repr => Charable repr => Char -> repr Char
222 char c = satisfy (Hask.eq (Hask.char c)) $> Hask.char c
223
224 item :: Charable repr => repr Char
225 item = satisfy (Hask.const Hask..@ Hask.bool True)
226
227 -- Composite Combinators
228 -- someTill :: repr a -> repr b -> repr [a]
229 -- someTill p end = negLook end *> (p <:> manyTill p end)
230
231 void :: Applicable repr => repr a -> repr ()
232 void p = p *> unit
233
234 unit :: Applicable repr => repr ()
235 unit = pure Hask.unit
236
237 {-
238
239 constp :: Applicable repr => repr a -> repr (b -> a)
240 constp = (Hask.const <$>)
241
242
243 -- Alias Operations
244 infixl 1 >>
245 (>>) :: Applicable repr => repr a -> repr b -> repr b
246 (>>) = (*>)
247
248 -- Monoidal Operations
249
250 infixl 4 <~>
251 (<~>) :: Applicable repr => repr a -> repr b -> repr (a, b)
252 (<~>) = liftA2 (Hask.runtime (,))
253
254 infixl 4 <~
255 (<~) :: Applicable repr => repr a -> repr b -> repr a
256 (<~) = (<*)
257
258 infixl 4 ~>
259 (~>) :: Applicable repr => repr a -> repr b -> repr b
260 (~>) = (*>)
261
262 -- Lift Operations
263 liftA2 ::
264 Applicable repr =>
265 Hask.Haskell (a -> b -> c) -> repr a -> repr b -> repr c
266 liftA2 f x = (<*>) (fmap f x)
267
268 liftA3 ::
269 Applicable repr =>
270 Hask.Haskell (a -> b -> c -> d) -> repr a -> repr b -> repr c -> repr d
271 liftA3 f a b c = liftA2 f a b <*> c
272
273 -}
274
275 -- Parser Folds
276 pfoldr ::
277 Applicable repr => Foldable repr =>
278 Hask.Haskell (a -> b -> b) -> Hask.Haskell b -> repr a -> repr b
279 pfoldr f k p = chainPre (f <$> p) (pure k)
280
281 pfoldr1 ::
282 Applicable repr => Foldable repr =>
283 Hask.Haskell (a -> b -> b) -> Hask.Haskell b -> repr a -> repr b
284 pfoldr1 f k p = f <$> p <*> pfoldr f k p
285
286 pfoldl ::
287 Applicable repr => Foldable repr =>
288 Hask.Haskell (b -> a -> b) -> Hask.Haskell b -> repr a -> repr b
289 pfoldl f k p = chainPost (pure k) ((Hask.flip <$> pure f) <*> p)
290
291 pfoldl1 ::
292 Applicable repr => Foldable repr =>
293 Hask.Haskell (b -> a -> b) -> Hask.Haskell b -> repr a -> repr b
294 pfoldl1 f k p = chainPost (f <$> pure k <*> p) ((Hask.flip <$> pure f) <*> p)
295
296 -- Chain Combinators
297 chainl1' ::
298 Applicable repr => Foldable repr =>
299 Hask.Haskell (a -> b) -> repr a -> repr (b -> a -> b) -> repr b
300 chainl1' f p op = chainPost (f <$> p) (Hask.flip <$> op <*> p)
301
302 chainl1 ::
303 Applicable repr => Foldable repr =>
304 repr a -> repr (a -> a -> a) -> repr a
305 chainl1 = chainl1' Hask.id
306
307 {-
308 chainr1' :: ParserOps rep => rep (a -> b) -> repr a -> repr (a -> b -> b) -> repr b
309 chainr1' f p op = newRegister_ Hask.id $ \acc ->
310 let go = bind p $ \x ->
311 modify acc (Hask.flip (Hask..@) <$> (op <*> x)) *> go
312 <|> f <$> x
313 in go <**> get acc
314
315 chainr1 :: repr a -> repr (a -> a -> a) -> repr a
316 chainr1 = chainr1' Hask.id
317
318 chainr :: repr a -> repr (a -> a -> a) -> Hask.Haskell a -> repr a
319 chainr p op x = option x (chainr1 p op)
320 -}
321
322 chainl ::
323 Applicable repr => Alternable repr => Foldable repr =>
324 repr a -> repr (a -> a -> a) -> Hask.Haskell a -> repr a
325 chainl p op x = option x (chainl1 p op)
326
327 -- Derived Combinators
328 many ::
329 Applicable repr => Foldable repr =>
330 repr a -> repr [a]
331 many = pfoldr Hask.cons Hask.nil
332
333 manyN ::
334 Applicable repr => Foldable repr =>
335 Int -> repr a -> repr [a]
336 manyN n p = List.foldr (const (p <:>)) (many p) [1..n]
337
338 some ::
339 Applicable repr => Foldable repr =>
340 repr a -> repr [a]
341 some = manyN 1
342
343 skipMany ::
344 Applicable repr => Foldable repr =>
345 repr a -> repr ()
346 --skipMany p = let skipManyp = p *> skipManyp <|> unit in skipManyp
347 skipMany = void . pfoldl Hask.const Hask.unit -- the void here will encourage the optimiser to recognise that the register is unused
348
349 skipManyN ::
350 Applicable repr => Foldable repr =>
351 Int -> repr a -> repr ()
352 skipManyN n p = List.foldr (const (p *>)) (skipMany p) [1..n]
353
354 skipSome ::
355 Applicable repr => Foldable repr =>
356 repr a -> repr ()
357 skipSome = skipManyN 1
358
359 sepBy ::
360 Applicable repr => Alternable repr => Foldable repr =>
361 repr a -> repr b -> repr [a]
362 sepBy p sep = option Hask.nil (sepBy1 p sep)
363
364 sepBy1 ::
365 Applicable repr => Alternable repr => Foldable repr =>
366 repr a -> repr b -> repr [a]
367 sepBy1 p sep = p <:> many (sep *> p)
368
369 endBy ::
370 Applicable repr => Alternable repr => Foldable repr =>
371 repr a -> repr b -> repr [a]
372 endBy p sep = many (p <* sep)
373
374 endBy1 ::
375 Applicable repr => Alternable repr => Foldable repr =>
376 repr a -> repr b -> repr [a]
377 endBy1 p sep = some (p <* sep)
378
379 sepEndBy ::
380 Applicable repr => Alternable repr => Foldable repr =>
381 repr a -> repr b -> repr [a]
382 sepEndBy p sep = option Hask.nil (sepEndBy1 p sep)
383
384 sepEndBy1 ::
385 Applicable repr => Alternable repr => Foldable repr =>
386 repr a -> repr b -> repr [a]
387 sepEndBy1 p sep =
388 let seb1 = p <**> (sep *> (Hask.flip Hask..@ Hask.cons <$> option Hask.nil seb1)
389 <|> pure (Hask.flip Hask..@ Hask.cons Hask..@ Hask.nil))
390 in seb1
391
392 {-
393 sepEndBy1 :: repr a -> repr b -> repr [a]
394 sepEndBy1 p sep = newRegister_ Hask.id $ \acc ->
395 let go = modify acc ((Hask.flip (Hask..)) Hask..@ Hask.cons <$> p)
396 *> (sep *> (go <|> get acc) <|> get acc)
397 in go <*> pure Hask.nil
398 -}
399
400 -- Combinators interpreters for 'Sym.Any'.
401 instance Applicable repr => Applicable (Sym.Any repr)
402 instance Charable repr => Charable (Sym.Any repr)
403 instance Alternable repr => Alternable (Sym.Any repr)
404 instance Selectable repr => Selectable (Sym.Any repr)
405 instance Matchable repr => Matchable (Sym.Any repr)
406 instance Lookable repr => Lookable (Sym.Any repr)
407 instance Foldable repr => Foldable (Sym.Any repr)