{-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} -- | Expression for 'Int's. module Language.LOL.Symantic.Expr.Int where import Data.Proxy (Proxy(..)) import Language.LOL.Symantic.AST import Language.LOL.Symantic.Type import Language.LOL.Symantic.Expr.Common import Language.LOL.Symantic.Expr.Lambda import Language.LOL.Symantic.Repr.Dup import Language.LOL.Symantic.Trans.Common -- * Class 'Sym_Int' -- | Symantic. class Sym_Int repr where int :: Int -> repr Int neg :: repr Int -> repr Int add :: repr Int -> repr Int -> repr Int default int :: Trans t repr => Int -> t repr Int default neg :: Trans t repr => t repr Int -> t repr Int default add :: Trans t repr => t repr Int -> t repr Int -> t repr Int int = trans_lift . int neg = trans_map1 neg add = trans_map2 add instance -- Sym_Int Dup ( Sym_Int r1 , Sym_Int r2 ) => Sym_Int (Dup r1 r2) where int x = int x `Dup` int x neg (x1 `Dup` x2) = neg x1 `Dup` neg x2 add (x1 `Dup` x2) (y1 `Dup` y2) = add x1 y1 `Dup` add x2 y2 -- * Type 'Expr_Int' -- | Expression. data Expr_Int (root:: *) type instance Root_of_Expr (Expr_Int root) = root type instance Type_of_Expr (Expr_Int root) = Type_Int type instance Sym_of_Expr (Expr_Int root) repr = Sym_Int repr type instance Error_of_Expr ast (Expr_Int root) = Error_Expr_Int ast instance -- Expr_from AST Expr_Int ( Type_from AST (Type_Root_of_Expr root) , Expr_from AST root , Type_Root_Lift Type_Int (Type_Root_of_Expr root) , Error_Type_Lift (Error_Type_Fun AST) (Error_of_Type AST (Type_Root_of_Expr root)) , Error_Expr_Lift (Error_Expr_Lambda (Error_of_Type AST (Type_Root_of_Expr root)) ( Type_Root_of_Expr root) AST) (Error_of_Expr AST root) , Error_Expr_Lift (Error_Expr AST) (Error_of_Expr AST root) , Type_Unlift Type_Int (Type_of_Expr root) , Root_of_Expr root ~ root -- , Root_of_Type (Type_Root_of_Expr root) ~ Type_Root_of_Expr root ) => Expr_from AST (Expr_Int root) where expr_from _px_ex ctx ast k = case ast of AST "int" asts -> case asts of [AST ast_int []] -> case read_safe ast_int of Left err -> Left $ error_expr_lift $ Error_Expr_Read err ast Right (i::Int) -> k type_int $ Forall_Repr_with_Context $ const $ int i _ -> Left $ error_lambda_lift $ Error_Expr_Fun_Wrong_number_of_arguments 3 ast AST "neg" asts -> unary_from asts neg AST "add" asts -> binary_from asts add _ -> Left $ error_expr_lift $ Error_Expr_Unsupported ast where unary_from asts (op::forall repr. Sym_Int repr => repr Int -> repr Int) = case asts of [ast_x] -> expr_from (Proxy::Proxy root) ctx ast_x $ \(ty_x::Type_Root_of_Expr root h_x) (Forall_Repr_with_Context x) -> case type_unlift $ unType_Root ty_x of Just (Type_Int::Type_Int (Type_Root_of_Expr root) h_x) -> k ty_x $ Forall_Repr_with_Context (op . x) _ -> Left $ error_lambda_lift $ Error_Expr_Fun_Argument_mismatch (Exists_Type type_int) (Exists_Type ty_x) ast _ -> Left $ error_lambda_lift $ Error_Expr_Fun_Wrong_number_of_arguments 1 ast binary_from asts (op::forall repr. Sym_Int repr => repr Int -> repr Int -> repr Int) = case asts of [ast_x, ast_y] -> expr_from (Proxy::Proxy root) ctx ast_x $ \(ty_x::Type_Root_of_Expr root h_x) (Forall_Repr_with_Context x) -> expr_from (Proxy::Proxy root) ctx ast_y $ \(ty_y::Type_Root_of_Expr root h_y) (Forall_Repr_with_Context y) -> case type_unlift $ unType_Root ty_x of Just (Type_Int::Type_Int (Type_Root_of_Expr root) h_x) -> case type_unlift $ unType_Root ty_y of Just (Type_Int::Type_Int (Type_Root_of_Expr root) h_y) -> k ty_x $ Forall_Repr_with_Context $ \c -> x c `op` y c Nothing -> Left $ error_lambda_lift $ Error_Expr_Fun_Argument_mismatch (Exists_Type type_int) (Exists_Type ty_y) ast Nothing -> Left $ error_lambda_lift $ Error_Expr_Fun_Argument_mismatch (Exists_Type type_int) (Exists_Type ty_x) ast _ -> Left $ error_lambda_lift $ Error_Expr_Fun_Wrong_number_of_arguments 2 ast error_lambda_lift :: Error_Expr_Lambda (Error_of_Type AST (Type_Root_of_Expr root)) (Type_Root_of_Expr root) AST -> Error_of_Expr AST root error_lambda_lift = error_expr_lift -- ** Type 'Expr_Lambda_Int' -- | Convenient alias. type Expr_Lambda_Int lam = Expr_Root (Expr_Cons (Expr_Lambda lam) Expr_Int) expr_lambda_int_from :: forall lam ast. Expr_from ast (Expr_Lambda_Int lam) => Proxy lam -> ast -> Either (Error_of_Expr ast (Expr_Lambda_Int lam)) (Exists_Type_and_Repr (Type_Root_of_Expr (Expr_Lambda_Int lam)) (Forall_Repr (Expr_Lambda_Int lam))) expr_lambda_int_from _px_lam ast = expr_from (Proxy::Proxy (Expr_Lambda_Int lam)) Context_Empty ast $ \ty (Forall_Repr_with_Context repr) -> Right $ Exists_Type_and_Repr ty $ Forall_Repr $ repr Context_Empty -- * Type 'Error_Expr_Int' data Error_Expr_Int ast = Error_Expr_Int deriving (Eq, Show)