expandFam (Term q t te) = Term (expandFam q) (expandFam t) te
-- Type
-instance Inj_Source (TermT src ss ts vs) src => TypeOf (Term src ss ts vs) where
- typeOf t = typeOfTerm t `source` TermT t
+instance SourceInj (TermT src ss ts vs) src => TypeOf (Term src ss ts vs) where
+ typeOf t = typeOfTerm t `withSource` TermT t
typeOfTerm :: Source src => Term src ss ts vs t -> Type src vs t
typeOfTerm (Term q t _) = q #> t
)
-- | Like 'TeSym', but 'CtxTe'-free
--- and using 'inj_Sym' to be able to use 'Sym'@ (@'Proxy'@ s)@ inside.
+-- and using 'symInj' to be able to use 'Sym'@ s@ inside.
teSym ::
forall s ss ts t.
- Inj_Sym ss s =>
- (forall term. Sym (Proxy s) term => Sym_Lambda term => QualOf t => term (UnQualOf t)) ->
+ SymInj ss s =>
+ (forall term. Sym s term => Sym_Lambda term => QualOf t => term (UnQualOf t)) ->
TeSym ss ts t
-teSym t = inj_Sym @s (TeSym $ const t)
+teSym t = symInj @s (TeSym $ const t)
-- ** Type family 'QualOf'
-- | Qualification
infixr 5 `CtxTeS`
-- ** Type 'TermDef'
--- | Convenient type alias for defining 'Term'.
-type TermDef s vs t = forall src ss ts. Source src => Inj_Sym ss s => Term src ss ts vs t
+-- | Convenient type alias to define a 'Term'.
+type TermDef s vs t = forall src ss ts. Source src => SymInj ss s => Term src ss ts vs t
-- ** Type family 'Sym'
-type family Sym (s::K.Type) :: {-term-}(K.Type -> K.Type) -> Constraint
+type family Sym (s::k) :: {-term-}(K.Type -> K.Type) -> Constraint
-- ** Type family 'Syms'
-type family Syms (ss::[K.Type]) (term:: K.Type -> K.Type) :: Constraint where
+type family Syms (ss::[K.Type]) (term::K.Type -> K.Type) :: Constraint where
Syms '[] term = ()
- Syms (s ': ss) term = (Sym s term, Syms ss term)
+ Syms (Proxy s ': ss) term = (Sym s term, Syms ss term)
--- ** Type 'Inj_Sym'
--- | Convenient type synonym wrapping 'Inj_SymP'
+-- ** Type 'SymInj'
+-- | Convenient type synonym wrapping 'SymPInj'
-- applied on the correct 'Index'.
-type Inj_Sym ss s = Inj_SymP (Index ss (Proxy s)) ss s
+type SymInj ss s = SymInjP (Index ss (Proxy s)) ss s
-- | Inject a given /symantic/ @s@ into a list of them,
-- by returning a function which given a 'TeSym' on @s@
-- returns the same 'TeSym' on @ss@.
-inj_Sym ::
+symInj ::
forall s ss ts t.
- Inj_Sym ss s =>
+ SymInj ss s =>
TeSym '[Proxy s] ts t ->
TeSym ss ts t
-inj_Sym = inj_SymP (Proxy @(Index ss (Proxy s)))
+symInj = symInjP @(Index ss (Proxy s))
--- *** Class 'Inj_SymP'
-class Inj_SymP p ss s where
- inj_SymP :: Proxy p -> TeSym '[Proxy s] ts t -> TeSym ss ts t
-instance Inj_SymP Zero (Proxy s ': ss) (s::k) where
- inj_SymP _ = \(TeSym te) -> TeSym te
-instance Inj_SymP p ss s => Inj_SymP (Succ p) (not_s ': ss) s where
- inj_SymP _p = \(te::TeSym '[Proxy s] ts t) ->
- case inj_SymP (Proxy @p) te :: TeSym ss ts t of
+-- *** Class 'SymPInj'
+class SymInjP p ss s where
+ symInjP :: TeSym '[Proxy s] ts t -> TeSym ss ts t
+instance SymInjP Zero (Proxy s ': ss) (s::k) where
+ symInjP (TeSym te) = TeSym te
+instance SymInjP p ss s => SymInjP (Succ p) (Proxy not_s ': ss) s where
+ symInjP (te::TeSym '[Proxy s] ts t) =
+ case symInjP @p te :: TeSym ss ts t of
TeSym te' -> TeSym te'
-- * Class 'Sym_Lambda'