-- | Symantic for 'Int'.
module Language.Symantic.Lib.Int where
+import Data.Eq (Eq)
+import Data.Function (($), (.))
+import Data.Int (Int)
+import Data.Maybe (Maybe(..))
+import Data.Ord (Ord)
+import Prelude (Bounded, Enum, Integral, Num, Real)
+import Text.Show (Show(..))
import qualified Data.Text as Text
import Language.Symantic
-- * Class 'Sym_Int'
-type instance Sym (Proxy Int) = Sym_Int
+type instance Sym Int = Sym_Int
class Sym_Int term where
int :: Int -> term Int
default int :: Sym_Int (UnT term) => Trans term => Int -> term Int
instance (Sym_Int term, Sym_Lambda term) => Sym_Int (BetaT term)
-- Typing
+instance NameTyOf Int where
+ nameTyOf _c = ["Int"] `Mod` "Int"
instance ClassInstancesFor Int where
- proveConstraintFor _c (TyApp _ (TyConst _ _ q) z)
+ proveConstraintFor _c (TyConst _ _ q :$ z)
| Just HRefl <- proj_ConstKiTy @_ @Int z
= case () of
_ | Just Refl <- proj_Const @Bounded q -> Just Dict
-- Compiling
instance Gram_Term_AtomsFor src ss g Int
-instance Module src ss Int
+instance ModuleFor src ss Int
-- ** 'Type's
-tyInt :: Source src => Inj_Len vs => Type src vs Int
+tyInt :: Source src => LenInj vs => Type src vs Int
tyInt = tyConst @(K Int) @Int
-- ** 'Term's
-teInt :: Source src => Inj_Sym ss Int => Int -> Term src ss ts '[] Int
+teInt :: Source src => SymInj ss Int => Int -> Term src ss ts '[] (() #> Int)
teInt i = Term noConstraint tyInt $ teSym @Int $ int i