{-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE NamedFieldPuns #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE RecordWildCards #-} {-# OPTIONS_GHC -fno-warn-orphans #-} -- | This module implements a strict 'TreeMap', -- which is like a 'Map' -- but whose key is now a 'NonNull' list of 'Map' keys (a 'Path') -- enabling the possibility to gather mapped values -- by 'Path' prefixes (inside a 'Node'). module Data.TreeMap.Strict where import Control.Applicative (Applicative(..)) import Control.DeepSeq (NFData(..)) import Control.Monad (Monad(..)) import Data.Bool import Data.Data (Data) import Data.Eq (Eq) import Data.Foldable (Foldable, foldMap) import Data.Function (($), (.), const, flip, id) import Data.Functor (Functor(..), (<$>)) import qualified Data.List import qualified Data.NonNull as NonNull import Data.NonNull (NonNull, nuncons, toNullable) import Data.Map.Strict (Map) import qualified Data.Map.Strict as Map import Data.Maybe (Maybe(..), maybe) import Data.Monoid (Monoid(..)) import Data.Ord (Ord(..)) import Data.Semigroup (Semigroup(..)) import Data.Sequences (reverse) import qualified Data.Strict.Maybe as Strict import Data.Traversable (Traversable(..)) import Data.Typeable (Typeable) import Prelude (Int, Num(..), seq) import Text.Show (Show(..)) -- @Data.Strict@ orphan instances deriving instance Data x => Data (Strict.Maybe x) deriving instance Typeable Strict.Maybe instance Semigroup x => Semigroup (Strict.Maybe x) where Strict.Just x <> Strict.Just y = Strict.Just (x <> y) x <> Strict.Nothing = x Strict.Nothing <> y = y instance Semigroup x => Monoid (Strict.Maybe x) where mempty = Strict.Nothing mappend = (<>) instance NFData x => NFData (Strict.Maybe x) where rnf Strict.Nothing = () rnf (Strict.Just x) = rnf x -- * Type 'TreeMap' newtype TreeMap k x = TreeMap (Map k (Node k x)) deriving (Data, Eq, Ord, Show, Typeable) instance (Ord k, Semigroup v) => Semigroup (TreeMap k v) where (<>) = union (<>) instance (Ord k, Monoid v) => Monoid (TreeMap k v) where mempty = empty mappend = union mappend -- mconcat = Data.List.foldr mappend mempty instance Ord k => Functor (TreeMap k) where fmap f (TreeMap m) = TreeMap $ fmap (fmap f) m instance Ord k => Foldable (TreeMap k) where foldMap f (TreeMap m) = foldMap (foldMap f) m instance Ord k => Traversable (TreeMap k) where traverse f (TreeMap m) = TreeMap <$> traverse (traverse f) m instance (Ord k, NFData k, NFData x) => NFData (TreeMap k x) where rnf (TreeMap m) = rnf m -- * Type 'Path' -- | A 'Path' is a non-empty list of 'Map' keys. type Path k = NonNull [k] -- | 'Path' constructor. path :: k -> [k] -> Path k path = NonNull.ncons -- | Convenient alias. (<|) :: k -> [k] -> Path k (<|) = path -- * Type 'Node' data Node k x = Node { node_size :: !Int -- ^ The number of non-'Strict.Nothing' 'node_value's reachable from this 'Node'. , node_value :: !(Strict.Maybe x) -- ^ Some value, or 'Strict.Nothing' if this 'Node' is intermediary. , node_descendants :: !(TreeMap k x) -- ^ Descendants 'Node's. } deriving (Data, Eq, Ord, Show, Typeable) instance (Ord k, Semigroup v) => Semigroup (Node k v) where (<>) Node{node_value=x0, node_descendants=m0} Node{node_value=x1, node_descendants=m1} = node (x0 <> x1) (union const m0 m1) instance (Ord k, Semigroup v) => Monoid (Node k v) where mempty = node Strict.Nothing (TreeMap mempty) mappend = (<>) -- mconcat = Data.List.foldr mappend mempty instance Ord k => Functor (Node k) where fmap f Node{node_value=x, node_descendants=m, node_size} = Node { node_value = fmap f x , node_descendants = map f m , node_size } instance Ord k => Foldable (Node k) where foldMap f Node{node_value=Strict.Nothing, node_descendants=TreeMap m} = foldMap (foldMap f) m foldMap f Node{node_value=Strict.Just x, node_descendants=TreeMap m} = f x `mappend` foldMap (foldMap f) m instance Ord k => Traversable (Node k) where traverse f Node{node_value=Strict.Nothing, node_descendants=TreeMap m, node_size} = Node node_size <$> pure Strict.Nothing <*> (TreeMap <$> traverse (traverse f) m) traverse f Node{node_value=Strict.Just x, node_descendants=TreeMap m, node_size} = Node node_size <$> (Strict.Just <$> f x) <*> (TreeMap <$> traverse (traverse f) m) instance (Ord k, NFData k, NFData x) => NFData (Node k x) where rnf (Node s v d) = rnf s `seq` rnf v `seq` rnf d node :: Strict.Maybe x -> TreeMap k x -> Node k x node node_value node_descendants = Node { node_value , node_size = size node_descendants + Strict.maybe 0 (const 1) node_value , node_descendants } node_empty :: Node k x node_empty = node Strict.Nothing empty node_find :: Ord k => [k] -> Node k x -> Strict.Maybe (Node k x) node_find [] n = Strict.Just n node_find (k:ks) Node{node_descendants=TreeMap m} = maybe Strict.Nothing (node_find ks) $ Map.lookup k m -- * Construct -- | Return the empty 'TreeMap'. empty :: TreeMap k x empty = TreeMap Map.empty -- | Return a 'TreeMap' only mapping the given 'Path' to the given value. singleton :: Ord k => Path k -> x -> TreeMap k x singleton ks x = insert const ks x empty -- | Return a 'Node' only containing the given value. leaf :: x -> Node k x leaf x = node (Strict.Just x) empty -- | Return the given 'TreeMap' associating the given 'Path' with the given value, -- merging values if the given 'TreeMap' already associates the given 'Path' -- with a non-'Strict.Nothing' 'node_value'. insert :: Ord k => (x -> x -> x) -> Path k -> x -> TreeMap k x -> TreeMap k x insert merge p x (TreeMap m) = TreeMap $ case nuncons p of (k, Nothing) -> Map.insertWith (\_ Node{..} -> node (Strict.maybe (Strict.Just x) (Strict.Just . merge x) node_value) node_descendants) k (leaf x) m (k, Just p') -> Map.insertWith (\_ Node{..} -> node node_value $ insert merge p' x node_descendants) k (node Strict.Nothing (insert merge p' x empty)) m -- | Return a 'TreeMap' associating for each tuple of the given list -- the 'Path' to the value, -- merging values of identical 'Path's (in respective order). from_List :: Ord k => (x -> x -> x) -> [(Path k, x)] -> TreeMap k x from_List merge = Data.List.foldl (\acc (p, x) -> insert merge p x acc) empty -- | Return a 'TreeMap' associating for each key and value of the given 'Map' -- the 'Path' to the value, -- merging values of identical 'Path's (in respective order). from_Map :: Ord k => (x -> x -> x) -> Map (Path k) x -> TreeMap k x from_Map merge = Map.foldlWithKey (\acc p x -> insert merge p x acc) empty -- * Size -- | Return the 'Map' in the given 'TreeMap'. nodes :: TreeMap k x -> Map k (Node k x) nodes (TreeMap m) = m -- | Return 'True' iif. the given 'TreeMap' is 'empty'. null :: TreeMap k x -> Bool null (TreeMap m) = Map.null m -- | Return the number of non-'Strict.Nothing' 'node_value's in the given 'TreeMap'. -- -- * Complexity: O(r) where r is the size of the root 'Map'. size :: TreeMap k x -> Int size = Map.foldr ((+) . node_size) 0 . nodes -- * Find -- | Return the value (if any) associated with the given 'Path'. find :: Ord k => Path k -> TreeMap k x -> Strict.Maybe x find p (TreeMap m) = maybe Strict.Nothing nod_val $ Map.lookup k m where (k, mp') = nuncons p nod_val = case mp' of Nothing -> node_value Just p' -> find p' . node_descendants -- | Return the values (if any) associated with the prefixes of the given 'Path' (included). find_along :: Ord k => Path k -> TreeMap k x -> [x] find_along p (TreeMap tm) = go (toNullable p) tm where go :: Ord k => [k] -> Map k (Node k x) -> [x] go [] _m = [] go (k:ks) m = case Map.lookup k m of Nothing -> [] Just nod -> Strict.maybe id (:) (node_value nod) $ go ks $ nodes (node_descendants nod) -- | Return the 'Node' (if any) associated with the given 'Path'. find_node :: Ord k => Path k -> TreeMap k x -> Maybe (Node k x) find_node p (TreeMap m) = case nuncons p of (k, Nothing) -> Map.lookup k m (k, Just p') -> Map.lookup k m >>= find_node p' . node_descendants -- * Union -- | Return a 'TreeMap' associating the same 'Path's as both given 'TreeMap's, -- merging values (in respective order) when a 'Path' leads -- to a non-'Strict.Nothing' 'node_value' in both given 'TreeMap's. union :: Ord k => (x -> x -> x) -> TreeMap k x -> TreeMap k x -> TreeMap k x union merge (TreeMap tm0) (TreeMap tm1) = TreeMap $ Map.unionWith (\Node{node_value=x0, node_descendants=m0} Node{node_value=x1, node_descendants=m1} -> node (Strict.maybe x1 (\x0' -> Strict.maybe (Strict.Just x0') (Strict.Just . merge x0') x1) x0) (union merge m0 m1)) tm0 tm1 -- | Return the 'union' of the given 'TreeMap's. -- -- NOTE: use 'Data.List.foldl'' to reduce demand on the control-stack. unions :: Ord k => (x -> x -> x) -> [TreeMap k x] -> TreeMap k x unions merge = Data.List.foldl' (union merge) empty -- foldl' :: (a -> b -> a) -> a -> [b] -> a -- foldl' f = go -- where -- go z [] = z -- go z (x:xs) = z `seq` go (f z x) xs -- * Map -- | Return the given 'TreeMap' with each non-'Strict.Nothing' 'node_value' -- mapped by the given function. map :: Ord k => (x -> y) -> TreeMap k x -> TreeMap k y map f = TreeMap . Map.map (\n@Node{node_value=x, node_descendants=m} -> n{ node_value = fmap f x , node_descendants = map f m }) . nodes -- | Return the given 'TreeMap' with each 'Path' section -- and each non-'Strict.Nothing' 'node_value' -- mapped by the given functions. -- -- WARNING: the function mapping 'Path' sections must be monotonic, -- like in 'Map.mapKeysMonotonic'. map_monotonic :: (Ord k, Ord l) => (k -> l) -> (x -> y) -> TreeMap k x -> TreeMap l y map_monotonic fk fx = TreeMap . Map.mapKeysMonotonic fk . Map.map (\n@Node{node_value=x, node_descendants=m} -> n{ node_value = fmap fx x , node_descendants = map_monotonic fk fx m }) . nodes -- | Return the given 'TreeMap' with each 'node_value' -- mapped by the given function supplied with -- the already mapped 'node_descendants' of the current 'Node'. map_by_depth_first :: Ord k => (TreeMap k y -> Strict.Maybe x -> y) -> TreeMap k x -> TreeMap k y map_by_depth_first f = TreeMap . Map.map (\Node{node_value, node_descendants} -> let m = map_by_depth_first f node_descendants in node (Strict.Just $ f m node_value) m) . nodes -- * Alter alterl_path :: Ord k => (Strict.Maybe x -> Strict.Maybe x) -> Path k -> TreeMap k x -> TreeMap k x alterl_path fct = go fct . toNullable where go :: Ord k => (Strict.Maybe x -> Strict.Maybe x) -> [k] -> TreeMap k x -> TreeMap k x go _f [] m = m go f (k:p) (TreeMap m) = TreeMap $ Map.alter (\c -> let (cv, cm) = case c of Just Node{node_value=v, node_descendants=d} -> (v, d) Nothing -> (Strict.Nothing, empty) in let fx = f cv in let gm = go f p cm in case (fx, size gm) of (Strict.Nothing, 0) -> Nothing (_, s) -> Just Node { node_value = fx , node_descendants = gm , node_size = s + 1 } ) k m -- * Fold -- | Return the given accumulator folded by the given function -- applied on non-'Strict.Nothing' 'node_value's -- from left to right through the given 'TreeMap'. foldl_with_Path :: Ord k => (a -> Path k -> x -> a) -> a -> TreeMap k x -> a foldl_with_Path = foldp [] where foldp :: Ord k => [k] -> (a -> Path k -> x -> a) -> a -> TreeMap k x -> a foldp p fct a (TreeMap m) = Map.foldlWithKey (\acc k Node{..} -> let acc' = Strict.maybe acc (fct acc (reverse $ path k p)) node_value in foldp (k:p) fct acc' node_descendants) a m -- | Return the given accumulator folded by the given function -- applied on non-'Strict.Nothing' 'Node's and 'node_value's -- from left to right through the given 'TreeMap'. foldl_with_Path_and_Node :: Ord k => (a -> Node k x -> Path k -> x -> a) -> a -> TreeMap k x -> a foldl_with_Path_and_Node = foldp [] where foldp :: Ord k => [k] -> (a -> Node k x -> Path k -> x -> a) -> a -> TreeMap k x -> a foldp p fct a (TreeMap m) = Map.foldlWithKey (\acc k n@Node{..} -> let acc' = Strict.maybe acc (fct acc n (reverse $ path k p)) node_value in foldp (k:p) fct acc' node_descendants) a m -- | Return the given accumulator folded by the given function -- applied on non-'Strict.Nothing' 'node_value's -- from right to left through the given 'TreeMap'. foldr_with_Path :: Ord k => (Path k -> x -> a -> a) -> a -> TreeMap k x -> a foldr_with_Path = foldp [] where foldp :: Ord k => [k] -> (Path k -> x -> a -> a) -> a -> TreeMap k x -> a foldp p fct a (TreeMap m) = Map.foldrWithKey (\k Node{..} acc -> let acc' = foldp (k:p) fct acc node_descendants in Strict.maybe acc' (\x -> fct (reverse $ path k p) x acc') node_value) a m -- | Return the given accumulator folded by the given function -- applied on non-'Strict.Nothing' 'Node's and 'node_value's -- from right to left through the given 'TreeMap'. foldr_with_Path_and_Node :: Ord k => (Node k x -> Path k -> x -> a -> a) -> a -> TreeMap k x -> a foldr_with_Path_and_Node = foldp [] where foldp :: Ord k => [k] -> (Node k x -> Path k -> x -> a -> a) -> a -> TreeMap k x -> a foldp p fct a (TreeMap m) = Map.foldrWithKey (\k n@Node{..} acc -> let acc' = foldp (k:p) fct acc node_descendants in Strict.maybe acc' (\x -> fct n (reverse $ path k p) x acc') node_value) a m -- | Return the given accumulator folded by the given function -- applied on non-'Strict.Nothing' 'node_value's -- from left to right along the given 'Path'. foldl_path :: Ord k => (Path k -> x -> a -> a) -> Path k -> TreeMap k x -> a -> a foldl_path fct = go fct [] . toNullable where go :: Ord k => (Path k -> x -> a -> a) -> [k] -> [k] -> TreeMap k x -> a -> a go _f _ [] _t a = a go f p (k:n) (TreeMap t) a = case Map.lookup k t of Nothing -> a Just Node{..} -> case node_value of Strict.Nothing -> go f (k:p) n node_descendants a Strict.Just x -> go f (k:p) n node_descendants (f (reverse $ path k p) x a) -- | Return the given accumulator folded by the given function -- applied on non-'Strict.Nothing' 'node_value's -- from right to left along the given 'Path'. foldr_path :: Ord k => (Path k -> x -> a -> a) -> Path k -> TreeMap k x -> a -> a foldr_path fct = go fct [] . toNullable where go :: Ord k => (Path k -> x -> a -> a) -> [k] -> [k] -> TreeMap k x -> a -> a go _f _ [] _t a = a go f p (k:n) (TreeMap t) a = case Map.lookup k t of Nothing -> a Just Node{..} -> case node_value of Strict.Nothing -> go f (k:p) n node_descendants a Strict.Just x -> f (reverse $ path k p) x $ go f (k:p) n node_descendants a -- * Flatten -- | Return a 'Map' associating each 'Path' -- leading to a non-'Strict.Nothing' 'node_value' in the given 'TreeMap', -- with its value mapped by the given function. flatten :: Ord k => (x -> y) -> TreeMap k x -> Map (Path k) y flatten = flatten_with_Path . const -- | Like 'flatten' but with also the current 'Path' given to the mapping function. flatten_with_Path :: Ord k => (Path k -> x -> y) -> TreeMap k x -> Map (Path k) y flatten_with_Path = flat_map [] where flat_map :: Ord k => [k] -> (Path k -> x -> y) -> TreeMap k x -> Map (Path k) y flat_map p f (TreeMap m) = Map.unions $ Map.mapKeysMonotonic (reverse . flip path p) ( Map.mapMaybeWithKey (\k Node{node_value} -> case node_value of Strict.Nothing -> Nothing Strict.Just x -> Just $ f (reverse $ path k p) x) m ) : Map.foldrWithKey (\k -> (:) . flat_map (k:p) f . node_descendants) [] m -- * Filter -- | Return the given 'TreeMap' -- keeping only its non-'Strict.Nothing' 'node_value's -- passing the given predicate. filter :: Ord k => (x -> Bool) -> TreeMap k x -> TreeMap k x filter f = map_Maybe_with_Path (\_p x -> if f x then Strict.Just x else Strict.Nothing) -- | Like 'filter' but with also the current 'Path' given to the predicate. filter_with_Path :: Ord k => (Path k -> x -> Bool) -> TreeMap k x -> TreeMap k x filter_with_Path f = map_Maybe_with_Path (\p x -> if f p x then Strict.Just x else Strict.Nothing) -- | Like 'filter_with_Path' but with also the current 'Node' given to the predicate. filter_with_Path_and_Node :: Ord k => (Node k x -> Path k -> x -> Bool) -> TreeMap k x -> TreeMap k x filter_with_Path_and_Node f = map_Maybe_with_Path_and_Node (\n p x -> if f n p x then Strict.Just x else Strict.Nothing) -- | Return the given 'TreeMap' -- mapping its non-'Strict.Nothing' 'node_value's -- and keeping only the non-'Strict.Nothing' results. map_Maybe :: Ord k => (x -> Strict.Maybe y) -> TreeMap k x -> TreeMap k y map_Maybe = map_Maybe_with_Path . const -- | Like 'map_Maybe' but with also the current 'Path' given to the predicate. map_Maybe_with_Path :: Ord k => (Path k -> x -> Strict.Maybe y) -> TreeMap k x -> TreeMap k y map_Maybe_with_Path = map_Maybe_with_Path_and_Node . const -- | Like 'map_Maybe_with_Path' but with also the current 'Node' given to the predicate. map_Maybe_with_Path_and_Node :: Ord k => (Node k x -> Path k -> x -> Strict.Maybe y) -> TreeMap k x -> TreeMap k y map_Maybe_with_Path_and_Node = go [] where go :: Ord k => [k] -> (Node k x -> Path k -> x -> Strict.Maybe y) -> TreeMap k x -> TreeMap k y go p test (TreeMap m) = TreeMap $ Map.mapMaybeWithKey (\k nod@Node{node_value=v, node_descendants=ns} -> let node_descendants = go (k:p) test ns in let node_size = size node_descendants in case v of Strict.Just x -> let node_value = test nod (reverse $ path k p) x in case node_value of Strict.Nothing | null node_descendants -> Nothing Strict.Nothing -> Just Node{node_value, node_descendants, node_size=1 + node_size} Strict.Just _ -> Just Node{node_value, node_descendants, node_size} _ -> if null node_descendants then Nothing else Just Node{node_value=Strict.Nothing, node_descendants, node_size} ) m