{-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DerivingStrategies #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE Rank2Types #-} -- for readElection {-# LANGUAGE UndecidableInstances #-} -- for Reifies instances module Voting.Protocol.Election where import Control.Applicative (Applicative(..), Alternative(..)) import Control.DeepSeq (NFData) import Control.Monad (Monad(..), join, mapM, replicateM, zipWithM) import Control.Monad.Trans.Class (MonadTrans(..)) import Control.Monad.Trans.Except (ExceptT(..), runExcept, throwE, withExceptT) import Data.Aeson (ToJSON(..),FromJSON(..),(.:),(.:?),(.=)) import Data.Bool import Data.Either (either) import Data.Eq (Eq(..)) import Data.Foldable (Foldable, foldMap, and) import Data.Function (($), (.), id, const) import Data.Functor (Functor, (<$>), (<$)) import Data.Functor.Identity (Identity(..)) import Data.Maybe (Maybe(..), maybe, fromJust, fromMaybe, listToMaybe) import Data.Monoid (Monoid(..)) import Data.Ord (Ord(..)) import Data.Proxy (Proxy(..)) import Data.Reflection (Reifies(..), reify) import Data.Semigroup (Semigroup(..)) import Data.String (String, IsString(..)) import Data.Text (Text) import Data.Traversable (Traversable(..)) import Data.Tuple (fst, snd) import GHC.Generics (Generic) import GHC.Natural (minusNaturalMaybe) import Numeric.Natural (Natural) import Prelude (fromIntegral) import System.IO (IO, FilePath) import System.Random (RandomGen) import Text.Show (Show(..), showChar, showString) import qualified Control.Monad.Trans.State.Strict as S import qualified Data.Aeson as JSON import qualified Data.Aeson.Encoding as JSON import qualified Data.Aeson.Internal as JSON import qualified Data.Aeson.Parser.Internal as JSON import qualified Data.Aeson.Types as JSON import qualified Data.ByteString as BS import qualified Data.ByteString.Lazy as BSL import qualified Data.Char as Char import qualified Data.List as List import qualified Data.Text as Text import qualified Text.ParserCombinators.ReadP as Read import qualified Text.Read as Read import Voting.Protocol.Utils import Voting.Protocol.Arith import Voting.Protocol.Credential -- * Type 'Encryption' -- | ElGamal-like encryption. -- Its security relies on the /Discrete Logarithm problem/. -- -- Because ('groupGen' '^'encNonce '^'secKey '==' 'groupGen' '^'secKey '^'encNonce), -- knowing @secKey@, one can divide 'encryption_vault' by @('encryption_nonce' '^'secKey)@ -- to decipher @('groupGen' '^'clear)@, then the @clear@ text must be small to be decryptable, -- because it is encrypted as a power of 'groupGen' (hence the "-like" in "ElGamal-like") -- to enable the additive homomorphism. -- -- NOTE: Since @('encryption_vault' '*' 'encryption_nonce' '==' 'encryption_nonce' '^' (secKey '+' clear))@, -- then: @(logBase 'encryption_nonce' ('encryption_vault' '*' 'encryption_nonce') '==' secKey '+' clear)@. data Encryption crypto v c = Encryption { encryption_nonce :: !(G crypto c) -- ^ Public part of the randomness 'encNonce' used to 'encrypt' the 'clear' text, -- equal to @('groupGen' '^'encNonce)@ , encryption_vault :: !(G crypto c) -- ^ Encrypted 'clear' text, -- equal to @('pubKey' '^'encNone '*' 'groupGen' '^'clear)@ } deriving (Generic) deriving instance Eq (G crypto c) => Eq (Encryption crypto v c) deriving instance (Show (G crypto c), Show (G crypto c)) => Show (Encryption crypto v c) deriving instance NFData (G crypto c) => NFData (Encryption crypto v c) instance ( Reifies v Version , GroupParams crypto c ) => ToJSON (Encryption crypto v c) where toJSON Encryption{..} = JSON.object [ "alpha" .= encryption_nonce , "beta" .= encryption_vault ] toEncoding Encryption{..} = JSON.pairs ( "alpha" .= encryption_nonce <> "beta" .= encryption_vault ) instance ( Reifies v Version , GroupParams crypto c ) => FromJSON (Encryption crypto v c) where parseJSON = JSON.withObject "Encryption" $ \o -> do encryption_nonce <- o .: "alpha" encryption_vault <- o .: "beta" return Encryption{..} -- | Additive homomorphism. -- Using the fact that: @'groupGen' '^'x '*' 'groupGen' '^'y '==' 'groupGen' '^'(x'+'y)@. instance GroupParams crypto c => Additive (Encryption crypto v c) where zero = Encryption one one x+y = Encryption (encryption_nonce x * encryption_nonce y) (encryption_vault x * encryption_vault y) -- *** Type 'EncryptionNonce' type EncryptionNonce = E -- | @('encrypt' pubKey clear)@ returns an ElGamal-like 'Encryption'. -- -- WARNING: the secret encryption nonce (@encNonce@) -- is returned alongside the 'Encryption' -- in order to 'prove' the validity of the encrypted 'clear' text in 'proveEncryption', -- but this secret @encNonce@ MUST be forgotten after that, -- as it may be used to decipher the 'Encryption' -- without the 'SecretKey' associated with 'pubKey'. encrypt :: Reifies v Version => GroupParams crypto c => Monad m => RandomGen r => PublicKey crypto c -> E crypto c -> S.StateT r m (EncryptionNonce crypto c, Encryption crypto v c) encrypt pubKey clear = do encNonce <- random -- NOTE: preserve the 'encNonce' for 'prove' in 'proveEncryption'. return $ (encNonce,) Encryption { encryption_nonce = groupGen^encNonce , encryption_vault = pubKey ^encNonce * groupGen^clear } -- * Type 'Proof' -- | Non-Interactive Zero-Knowledge 'Proof' -- of knowledge of a discrete logarithm: -- @(secret == logBase base (base^secret))@. data Proof crypto v c = Proof { proof_challenge :: !(Challenge crypto c) -- ^ 'Challenge' sent by the verifier to the prover -- to ensure that the prover really has knowledge -- of the secret and is not replaying. -- Actually, 'proof_challenge' is not sent to the prover, -- but derived from the prover's 'Commitment's and statements -- with a collision resistant 'hash'. -- Hence the prover cannot chose the 'proof_challenge' to his/her liking. , proof_response :: !(E crypto c) -- ^ A discrete logarithm sent by the prover to the verifier, -- as a response to 'proof_challenge'. -- -- If the verifier observes that @('proof_challenge' '==' 'hash' statement [commitment])@, where: -- -- * @statement@ is a serialization of a tag, @base@ and @basePowSec@, -- * @commitment '==' 'commit' proof base basePowSec '==' -- base '^' 'proof_response' '*' basePowSec '^' 'proof_challenge'@, -- * and @basePowSec '==' base'^'sec@, -- -- then, with overwhelming probability (due to the 'hash' function), -- the prover was not able to choose 'proof_challenge' -- yet was able to compute a 'proof_response' such that -- (@commitment '==' base '^' 'proof_response' '*' basePowSec '^' 'proof_challenge'@), -- that is to say: @('proof_response' '==' logBase base 'commitment' '-' sec '*' 'proof_challenge')@, -- therefore the prover knows 'sec'. -- -- The prover choses 'commitment' to be a random power of @base@, -- to ensure that each 'prove' does not reveal any information -- about its secret. } deriving (Eq,Show,NFData,Generic) instance ToJSON (Proof crypto v c) where toJSON Proof{..} = JSON.object [ "challenge" .= proof_challenge , "response" .= proof_response ] toEncoding Proof{..} = JSON.pairs ( "challenge" .= proof_challenge <> "response" .= proof_response ) instance GroupParams crypto c => FromJSON (Proof crypto v c) where parseJSON = JSON.withObject "TrusteePublicKey" $ \o -> do proof_challenge <- o .: "challenge" proof_response <- o .: "response" return Proof{..} -- ** Type 'ZKP' -- | Zero-knowledge proof. -- -- A protocol is /zero-knowledge/ if the verifier -- learns nothing from the protocol except that the prover -- knows the secret. -- -- DOC: Mihir Bellare and Phillip Rogaway. Random oracles are practical: -- A paradigm for designing efficient protocols. In ACM-CCS’93, 1993. newtype ZKP = ZKP BS.ByteString -- ** Type 'Challenge' type Challenge = E -- ** Type 'Oracle' -- An 'Oracle' returns the 'Challenge' of the 'Commitment's -- by 'hash'ing them (eventually with other 'Commitment's). -- -- Used in 'prove' it enables a Fiat-Shamir transformation -- of an /interactive zero-knowledge/ (IZK) proof -- into a /non-interactive zero-knowledge/ (NIZK) proof. -- That is to say that the verifier does not have -- to send a 'Challenge' to the prover. -- Indeed, the prover now handles the 'Challenge' -- which becomes a (collision resistant) 'hash' -- of the prover's commitments (and statements to be a stronger proof). type Oracle list crypto c = list (Commitment crypto c) -> Challenge crypto c -- | @('prove' sec commitmentBases oracle)@ -- returns a 'Proof' that @sec@ is known -- (by proving the knowledge of its discrete logarithm). -- -- The 'Oracle' is given 'Commitment's equal to the 'commitmentBases' -- raised to the power of the secret nonce of the 'Proof', -- as those are the 'Commitment's that the verifier will obtain -- when composing the 'proof_challenge' and 'proof_response' together -- (with 'commit'). -- -- WARNING: for 'prove' to be a so-called /strong Fiat-Shamir transformation/ (not a weak): -- the statement must be included in the 'hash' (along with the commitments). -- -- NOTE: a 'random' @nonce@ is used to ensure each 'prove' -- does not reveal any information regarding the secret @sec@, -- because two 'Proof's using the same 'Commitment' -- can be used to deduce @sec@ (using the special-soundness). prove :: forall crypto v c list m r. Reifies v Version => GroupParams crypto c => Monad m => RandomGen r => Functor list => E crypto c -> list (G crypto c) -> Oracle list crypto c -> S.StateT r m (Proof crypto v c) prove sec commitmentBases oracle = do nonce <- random let commitments = (^ nonce) <$> commitmentBases let proof_challenge = oracle commitments return Proof { proof_challenge , proof_response = nonce `op` (sec*proof_challenge) } where -- | See comments in 'commit'. op = if reflect (Proxy @v) `hasVersionTag` versionTagQuicker then (-) else (+) -- | Like 'prove' but quicker. It chould replace 'prove' entirely -- when Helios-C specifications will be fixed. proveQuicker :: Reifies v Version => GroupParams crypto c => Monad m => RandomGen r => Functor list => E crypto c -> list (G crypto c) -> Oracle list crypto c -> S.StateT r m (Proof crypto v c) proveQuicker sec commitmentBases oracle = do nonce <- random let commitments = (^ nonce) <$> commitmentBases let proof_challenge = oracle commitments return Proof { proof_challenge , proof_response = nonce - sec*proof_challenge } -- | @('fakeProof')@ returns a 'Proof' -- whose 'proof_challenge' and 'proof_response' are uniformly chosen at random, -- instead of @('proof_challenge' '==' 'hash' statement commitments)@ -- and @('proof_response' '==' nonce '+' sec '*' 'proof_challenge')@ -- as a 'Proof' returned by 'prove'. -- -- Used in 'proveEncryption' to fill the returned 'DisjProof' -- with fake 'Proof's for all 'Disjunction's but the encrypted one. fakeProof :: GroupParams crypto c => Monad m => RandomGen r => S.StateT r m (Proof crypto v c) fakeProof = do proof_challenge <- random proof_response <- random return Proof{..} -- ** Type 'Commitment' -- | A commitment from the prover to the verifier. -- It's a power of 'groupGen' chosen randomly by the prover -- when making a 'Proof' with 'prove'. type Commitment = G -- | @('commit' proof base basePowSec)@ returns a 'Commitment' -- from the given 'Proof' with the knowledge of the verifier. commit :: forall crypto v c. Reifies v Version => GroupParams crypto c => Proof crypto v c -> G crypto c -> G crypto c -> Commitment crypto c commit Proof{..} base basePowSec = (base^proof_response) `op` (basePowSec^proof_challenge) where op = if reflect (Proxy @v) `hasVersionTag` versionTagQuicker then (*) else (/) -- TODO: contrary to some textbook presentations, -- @('*')@ should be used instead of @('/')@ to avoid the performance cost -- of a modular exponentiation @('^' ('groupOrder' '-' 'one'))@, -- this is compensated by using @('-')@ instead of @('+')@ in 'prove'. {-# INLINE commit #-} -- | Like 'commit' but quicker. It chould replace 'commit' entirely -- when Helios-C specifications will be fixed. commitQuicker :: GroupParams crypto c => Proof crypto v c -> G crypto c -> G crypto c -> Commitment crypto c commitQuicker Proof{..} base basePowSec = base^proof_response * basePowSec^proof_challenge -- * Type 'Disjunction' -- | A 'Disjunction' is an 'inverse'd @('groupGen' '^'opinion)@ -- it's used in 'proveEncryption' to generate a 'Proof' -- that an 'encryption_vault' contains a given @('groupGen' '^'opinion)@, type Disjunction = G booleanDisjunctions :: forall crypto c. GroupParams crypto c => [Disjunction crypto c] booleanDisjunctions = List.take 2 $ groupGenInverses @crypto intervalDisjunctions :: forall crypto c. GroupParams crypto c => Natural -> Natural -> [Disjunction crypto c] intervalDisjunctions mini maxi = List.genericTake (fromJust $ (nat maxi + 1)`minusNaturalMaybe`nat mini) $ List.genericDrop (nat mini) $ groupGenInverses @crypto -- ** Type 'Opinion' -- | Index of a 'Disjunction' within a list of them. -- It is encrypted as a 'GroupExponent' by 'encrypt'. type Opinion = E -- ** Type 'DisjProof' -- | A list of 'Proof's to prove that the 'Opinion' within an 'Encryption' -- is indexing a 'Disjunction' within a list of them, -- without revealing which 'Opinion' it is. newtype DisjProof crypto v c = DisjProof [Proof crypto v c] deriving (Eq,Show,Generic) deriving newtype (NFData,ToJSON,FromJSON) -- | @('proveEncryption' elecPubKey voterZKP (prevDisjs,nextDisjs) (encNonce,enc))@ -- returns a 'DisjProof' that 'enc' 'encrypt's -- the 'Disjunction' 'd' between 'prevDisjs' and 'nextDisjs'. -- -- The prover proves that it knows an 'encNonce', such that: -- @(enc '==' Encryption{encryption_nonce='groupGen' '^'encNonce, encryption_vault=elecPubKey'^'encNonce '*' groupGen'^'d})@ -- -- A /NIZK Disjunctive Chaum Pedersen Logarithm Equality/ is used. -- -- DOC: Pierrick Gaudry. , 2017. proveEncryption :: Reifies v Version => GroupParams crypto c => Monad m => RandomGen r => PublicKey crypto c -> ZKP -> ([Disjunction crypto c],[Disjunction crypto c]) -> (EncryptionNonce crypto c, Encryption crypto v c) -> S.StateT r m (DisjProof crypto v c) proveEncryption elecPubKey voterZKP (prevDisjs,nextDisjs) (encNonce,enc) = do -- Fake proofs for all 'Disjunction's except the genuine one. prevFakeProofs <- replicateM (List.length prevDisjs) fakeProof nextFakeProofs <- replicateM (List.length nextDisjs) fakeProof let fakeChallengeSum = sum (proof_challenge <$> prevFakeProofs) + sum (proof_challenge <$> nextFakeProofs) let statement = encryptionStatement voterZKP enc genuineProof <- prove encNonce [groupGen, elecPubKey] $ \genuineCommitments -> let validCommitments = List.zipWith (encryptionCommitments elecPubKey enc) in let prevCommitments = validCommitments prevDisjs prevFakeProofs in let nextCommitments = validCommitments nextDisjs nextFakeProofs in let commitments = join prevCommitments <> genuineCommitments <> join nextCommitments in let challenge = hash statement commitments in let genuineChallenge = challenge - fakeChallengeSum in genuineChallenge -- NOTE: here by construction (genuineChallenge == challenge - fakeChallengeSum) -- thus (sum (proof_challenge <$> proofs) == challenge) -- as checked in 'verifyEncryption'. let proofs = prevFakeProofs <> (genuineProof : nextFakeProofs) return (DisjProof proofs) verifyEncryption :: Reifies v Version => GroupParams crypto c => Monad m => PublicKey crypto c -> ZKP -> [Disjunction crypto c] -> (Encryption crypto v c, DisjProof crypto v c) -> ExceptT ErrorVerifyEncryption m Bool verifyEncryption elecPubKey voterZKP disjs (enc, DisjProof proofs) = case isoZipWith (encryptionCommitments elecPubKey enc) disjs proofs of Nothing -> throwE $ ErrorVerifyEncryption_InvalidProofLength (fromIntegral $ List.length proofs) (fromIntegral $ List.length disjs) Just commitments -> return $ challengeSum == hash (encryptionStatement voterZKP enc) (join commitments) where challengeSum = sum (proof_challenge <$> proofs) -- ** Hashing encryptionStatement :: GroupParams crypto c => ZKP -> Encryption crypto v c -> BS.ByteString encryptionStatement (ZKP voterZKP) Encryption{..} = "prove|"<>voterZKP<>"|" <> bytesNat encryption_nonce<>"," <> bytesNat encryption_vault<>"|" -- | @('encryptionCommitments' elecPubKey enc disj proof)@ -- returns the 'Commitment's with only the knowledge of the verifier. -- -- For the prover the 'Proof' comes from @fakeProof@, -- and for the verifier the 'Proof' comes from the prover. encryptionCommitments :: Reifies v Version => GroupParams crypto c => PublicKey crypto c -> Encryption crypto v c -> Disjunction crypto c -> Proof crypto v c -> [G crypto c] encryptionCommitments elecPubKey Encryption{..} disj proof = [ commit proof groupGen encryption_nonce -- == groupGen ^ nonce if 'Proof' comes from 'prove'. -- base==groupGen, basePowSec==groupGen^encNonce. , commit proof elecPubKey (encryption_vault*disj) -- == elecPubKey ^ nonce if 'Proof' comes from 'prove' -- and 'encryption_vault' encrypts (- logBase groupGen disj). -- base==elecPubKey, basePowSec==elecPubKey^encNonce. ] -- ** Type 'ErrorVerifyEncryption' -- | Error raised by 'verifyEncryption'. data ErrorVerifyEncryption = ErrorVerifyEncryption_InvalidProofLength Natural Natural -- ^ When the number of proofs is different than -- the number of 'Disjunction's. deriving (Eq,Show) -- * Type 'Question' data Question v = Question { question_text :: !Text , question_choices :: ![Text] , question_mini :: !Natural , question_maxi :: !Natural -- , question_blank :: Maybe Bool } deriving (Eq,Show,Generic,NFData) instance Reifies v Version => ToJSON (Question v) where toJSON Question{..} = JSON.object [ "question" .= question_text , "answers" .= question_choices , "min" .= question_mini , "max" .= question_maxi ] toEncoding Question{..} = JSON.pairs ( "question" .= question_text <> "answers" .= question_choices <> "min" .= question_mini <> "max" .= question_maxi ) instance Reifies v Version => FromJSON (Question v) where parseJSON = JSON.withObject "Question" $ \o -> do question_text <- o .: "question" question_choices <- o .: "answers" question_mini <- o .: "min" question_maxi <- o .: "max" return Question{..} -- * Type 'Answer' data Answer crypto v c = Answer { answer_opinions :: ![(Encryption crypto v c, DisjProof crypto v c)] -- ^ Encrypted 'Opinion' for each 'question_choices' -- with a 'DisjProof' that they belong to [0,1]. , answer_sumProof :: !(DisjProof crypto v c) -- ^ Proofs that the sum of the 'Opinon's encrypted in 'answer_opinions' -- is an element of @[mini..maxi]@. -- , answer_blankProof :: } deriving (Generic) deriving instance Eq (G crypto c) => Eq (Answer crypto v c) deriving instance (Show (G crypto c), Show (G crypto c)) => Show (Answer crypto v c) deriving instance NFData (G crypto c) => NFData (Answer crypto v c) instance ( Reifies v Version , GroupParams crypto c ) => ToJSON (Answer crypto v c) where toJSON Answer{..} = let (answer_choices, answer_individual_proofs) = List.unzip answer_opinions in JSON.object [ "choices" .= answer_choices , "individual_proofs" .= answer_individual_proofs , "overall_proof" .= answer_sumProof ] toEncoding Answer{..} = let (answer_choices, answer_individual_proofs) = List.unzip answer_opinions in JSON.pairs ( "choices" .= answer_choices <> "individual_proofs" .= answer_individual_proofs <> "overall_proof" .= answer_sumProof ) instance ( Reifies v Version , GroupParams crypto c ) => FromJSON (Answer crypto v c) where parseJSON = JSON.withObject "Answer" $ \o -> do answer_choices <- o .: "choices" answer_individual_proofs <- o .: "individual_proofs" let answer_opinions = List.zip answer_choices answer_individual_proofs answer_sumProof <- o .: "overall_proof" return Answer{..} -- | @('encryptAnswer' elecPubKey zkp quest opinions)@ -- returns an 'Answer' validable by 'verifyAnswer', -- unless an 'ErrorAnswer' is returned. encryptAnswer :: Reifies v Version => GroupParams crypto c => Monad m => RandomGen r => PublicKey crypto c -> ZKP -> Question v -> [Bool] -> S.StateT r (ExceptT ErrorAnswer m) (Answer crypto v c) encryptAnswer (elecPubKey::PublicKey crypto c) zkp Question{..} opinionByChoice | not (question_mini <= opinionsSum && opinionsSum <= question_maxi) = lift $ throwE $ ErrorAnswer_WrongSumOfOpinions opinionsSum question_mini question_maxi | List.length opinions /= List.length question_choices = lift $ throwE $ ErrorAnswer_WrongNumberOfOpinions (fromIntegral $ List.length opinions) (fromIntegral $ List.length question_choices) | otherwise = do encryptions <- encrypt elecPubKey `mapM` opinions individualProofs <- zipWithM (\opinion -> proveEncryption elecPubKey zkp $ if opinion then (List.init booleanDisjunctions,[]) else ([],List.tail booleanDisjunctions)) opinionByChoice encryptions sumProof <- proveEncryption elecPubKey zkp (List.tail <$> List.genericSplitAt (fromJust $ opinionsSum`minusNaturalMaybe`question_mini) (intervalDisjunctions question_mini question_maxi)) ( sum (fst <$> encryptions) -- NOTE: sum the 'encNonce's , sum (snd <$> encryptions) -- NOTE: sum the 'Encryption's ) return $ Answer { answer_opinions = List.zip (snd <$> encryptions) -- NOTE: drop encNonce individualProofs , answer_sumProof = sumProof } where opinionsSum = sum $ nat <$> opinions opinions = (\o -> if o then one else zero) <$> opinionByChoice verifyAnswer :: Reifies v Version => GroupParams crypto c => PublicKey crypto c -> ZKP -> Question v -> Answer crypto v c -> Bool verifyAnswer (elecPubKey::PublicKey crypto c) zkp Question{..} Answer{..} | List.length question_choices /= List.length answer_opinions = False | otherwise = do either (const False) id $ runExcept $ do validOpinions <- verifyEncryption elecPubKey zkp booleanDisjunctions `traverse` answer_opinions validSum <- verifyEncryption elecPubKey zkp (intervalDisjunctions question_mini question_maxi) ( sum (fst <$> answer_opinions) , answer_sumProof ) return (and validOpinions && validSum) -- ** Type 'ErrorAnswer' -- | Error raised by 'encryptAnswer'. data ErrorAnswer = ErrorAnswer_WrongNumberOfOpinions Natural Natural -- ^ When the number of opinions is different than -- the number of choices ('question_choices'). | ErrorAnswer_WrongSumOfOpinions Natural Natural Natural -- ^ When the sum of opinions is not within the bounds -- of 'question_mini' and 'question_maxi'. deriving (Eq,Show,Generic,NFData) -- * Type 'Election' data Election crypto v c = Election { election_name :: !Text , election_description :: !Text , election_questions :: ![Question v] , election_uuid :: !UUID , election_hash :: Base64SHA256 , election_crypto :: !crypto , election_version :: !(Maybe Version) , election_public_key :: !(PublicKey crypto c) } deriving (Generic) deriving instance (Eq crypto, Eq (G crypto c)) => Eq (Election crypto v c) deriving instance (Show crypto, Show (G crypto c)) => Show (Election crypto v c) deriving instance (NFData crypto, NFData (G crypto c)) => NFData (Election crypto v c) instance ( Reifies v Version , GroupParams crypto c , ToJSON crypto ) => ToJSON (Election crypto v c) where toJSON Election{..} = JSON.object $ [ "name" .= election_name , "description" .= election_description , ("public_key", JSON.object [ "group" .= election_crypto , "y" .= election_public_key ]) , "questions" .= election_questions , "uuid" .= election_uuid ] <> maybe [] (\version -> [ "version" .= version ]) election_version toEncoding Election{..} = JSON.pairs $ ( "name" .= election_name <> "description" .= election_description <> JSON.pair "public_key" (JSON.pairs $ "group" .= election_crypto <> "y" .= election_public_key ) <> "questions" .= election_questions <> "uuid" .= election_uuid ) <> maybe mempty ("version" .=) election_version hashElection :: Reifies v Version => GroupParams crypto c => ToJSON crypto => Election crypto v c -> Base64SHA256 hashElection = base64SHA256 . BSL.toStrict . JSON.encode readElection :: forall crypto r. FromJSON crypto => ReifyCrypto crypto => FilePath -> (forall v c. Reifies v Version => GroupParams crypto c => Election crypto v c -> r) -> ExceptT String IO r readElection filePath k = do fileData <- lift $ BS.readFile filePath ExceptT $ return $ jsonEitherFormatError $ JSON.eitherDecodeStrictWith JSON.jsonEOF (JSON.iparse (parseElection fileData)) fileData where parseElection fileData = JSON.withObject "Election" $ \o -> do election_version <- o .:? "version" reify (fromMaybe stableVersion election_version) $ \(_v::Proxy v) -> do (election_crypto, elecPubKey) <- JSON.explicitParseField (JSON.withObject "public_key" $ \obj -> do crypto <- obj .: "group" pubKey :: JSON.Value <- obj .: "y" return (crypto, pubKey) ) o "public_key" reifyCrypto election_crypto $ \(_c::Proxy c) -> do election_name <- o .: "name" election_description <- o .: "description" election_questions <- o .: "questions" :: JSON.Parser [Question v] election_uuid <- o .: "uuid" election_public_key :: PublicKey crypto c <- parseJSON elecPubKey return $ k $ Election { election_questions = election_questions , election_public_key = election_public_key , election_hash = base64SHA256 fileData , .. } -- * Type 'Ballot' data Ballot crypto v c = Ballot { ballot_answers :: ![Answer crypto v c] , ballot_signature :: !(Maybe (Signature crypto v c)) , ballot_election_uuid :: !UUID , ballot_election_hash :: !Base64SHA256 } deriving (Generic) deriving instance (NFData (G crypto c), NFData crypto) => NFData (Ballot crypto v c) instance ( Reifies v Version , GroupParams crypto c , ToJSON (G crypto c) ) => ToJSON (Ballot crypto v c) where toJSON Ballot{..} = JSON.object $ [ "answers" .= ballot_answers , "election_uuid" .= ballot_election_uuid , "election_hash" .= ballot_election_hash ] <> maybe [] (\sig -> [ "signature" .= sig ]) ballot_signature toEncoding Ballot{..} = JSON.pairs $ ( "answers" .= ballot_answers <> "election_uuid" .= ballot_election_uuid <> "election_hash" .= ballot_election_hash ) <> maybe mempty ("signature" .=) ballot_signature instance ( Reifies v Version , GroupParams crypto c ) => FromJSON (Ballot crypto v c) where parseJSON = JSON.withObject "Ballot" $ \o -> do ballot_answers <- o .: "answers" ballot_signature <- o .:? "signature" ballot_election_uuid <- o .: "election_uuid" ballot_election_hash <- o .: "election_hash" return Ballot{..} -- | @('encryptBallot' c ('Just' ballotSecKey) opinionsByQuest)@ -- returns a 'Ballot' signed by 'secKey' (the voter's secret key) -- where 'opinionsByQuest' is a list of 'Opinion's -- on each 'question_choices' of each 'election_questions'. encryptBallot :: Reifies v Version => GroupParams crypto c => Key crypto => Monad m => RandomGen r => Election crypto v c -> Maybe (SecretKey crypto c) -> [[Bool]] -> S.StateT r (ExceptT ErrorBallot m) (Ballot crypto v c) encryptBallot (Election{..}::Election crypto v c) ballotSecKeyMay opinionsByQuest | List.length election_questions /= List.length opinionsByQuest = lift $ throwE $ ErrorBallot_WrongNumberOfAnswers (fromIntegral $ List.length opinionsByQuest) (fromIntegral $ List.length election_questions) | otherwise = do let (voterKeys, voterZKP) = case ballotSecKeyMay of Nothing -> (Nothing, ZKP "") Just ballotSecKey -> ( Just (ballotSecKey, ballotPubKey) , ZKP (bytesNat ballotPubKey) ) where ballotPubKey = publicKey ballotSecKey ballot_answers <- S.mapStateT (withExceptT ErrorBallot_Answer) $ zipWithM (encryptAnswer election_public_key voterZKP) election_questions opinionsByQuest ballot_signature <- case voterKeys of Nothing -> return Nothing Just (ballotSecKey, signature_publicKey) -> do signature_proof <- proveQuicker ballotSecKey (Identity groupGen) $ \(Identity commitment) -> hash @crypto -- NOTE: the order is unusual, the commitments are first -- then comes the statement. Best guess is that -- this is easier to code due to their respective types. (signatureCommitments @crypto voterZKP commitment) (signatureStatement @crypto ballot_answers) return $ Just Signature{..} return Ballot { ballot_answers , ballot_election_hash = election_hash , ballot_election_uuid = election_uuid , ballot_signature } verifyBallot :: Reifies v Version => GroupParams crypto c => Election crypto v c -> Ballot crypto v c -> Bool verifyBallot (Election{..}::Election crypto v c) Ballot{..} = ballot_election_uuid == election_uuid && ballot_election_hash == election_hash && List.length election_questions == List.length ballot_answers && let (isValidSign, zkpSign) = case ballot_signature of Nothing -> (True, ZKP "") Just Signature{..} -> let zkp = ZKP (bytesNat signature_publicKey) in (, zkp) $ proof_challenge signature_proof == hash (signatureCommitments @crypto zkp (commitQuicker signature_proof groupGen signature_publicKey)) (signatureStatement @crypto ballot_answers) in and $ isValidSign : List.zipWith (verifyAnswer election_public_key zkpSign) election_questions ballot_answers -- ** Type 'Signature' -- | Schnorr-like signature. -- -- Used by each voter to sign his/her encrypted 'Ballot' -- using his/her 'Credential', -- in order to avoid ballot stuffing. data Signature crypto v c = Signature { signature_publicKey :: !(PublicKey crypto c) -- ^ Verification key. , signature_proof :: !(Proof crypto v c) } deriving (Generic) deriving instance (NFData crypto, NFData (G crypto c)) => NFData (Signature crypto v c) instance ( Reifies v Version , GroupParams crypto c ) => ToJSON (Signature crypto v c) where toJSON (Signature pubKey Proof{..}) = JSON.object [ "public_key" .= pubKey , "challenge" .= proof_challenge , "response" .= proof_response ] toEncoding (Signature pubKey Proof{..}) = JSON.pairs ( "public_key" .= pubKey <> "challenge" .= proof_challenge <> "response" .= proof_response ) instance ( Reifies v Version , GroupParams crypto c ) => FromJSON (Signature crypto v c) where parseJSON = JSON.withObject "Signature" $ \o -> do signature_publicKey <- o .: "public_key" proof_challenge <- o .: "challenge" proof_response <- o .: "response" let signature_proof = Proof{..} return Signature{..} -- *** Hashing -- | @('signatureStatement' answers)@ -- returns the encrypted material to be signed: -- all the 'encryption_nonce's and 'encryption_vault's of the given @answers@. signatureStatement :: GroupParams crypto c => Foldable f => f (Answer crypto v c) -> [G crypto c] signatureStatement = foldMap $ \Answer{..} -> (`foldMap` answer_opinions) $ \(Encryption{..}, _proof) -> [encryption_nonce, encryption_vault] -- | @('signatureCommitments' voterZKP commitment)@ signatureCommitments :: GroupParams crypto c => ToNatural (G crypto c) => ZKP -> Commitment crypto c -> BS.ByteString signatureCommitments (ZKP voterZKP) commitment = "sig|"<>voterZKP<>"|" -- NOTE: this is actually part of the statement <> bytesNat commitment<>"|" -- ** Type 'ErrorBallot' -- | Error raised by 'encryptBallot'. data ErrorBallot = ErrorBallot_WrongNumberOfAnswers Natural Natural -- ^ When the number of answers -- is different than the number of questions. | ErrorBallot_Answer ErrorAnswer -- ^ When 'encryptAnswer' raised an 'ErrorAnswer'. | ErrorBallot_Wrong -- ^ TODO: to be more precise. deriving (Eq,Show,Generic,NFData) -- * Type 'Version' -- | Version of the Helios-C protocol. data Version = Version { version_branch :: [Natural] , version_tags :: [(Text, Natural)] } deriving (Eq,Ord,Generic,NFData) instance IsString Version where fromString = fromJust . readVersion instance Show Version where showsPrec _p Version{..} = List.foldr (.) id (List.intersperse (showChar '.') $ showsPrec 0 <$> version_branch) . List.foldr (.) id ((\(t,n) -> showChar '-' . showString (Text.unpack t) . if n > 0 then showsPrec 0 n else id) <$> version_tags) instance ToJSON Version where toJSON = toJSON . show toEncoding = toEncoding . show instance FromJSON Version where parseJSON (JSON.String s) | Just v <- readVersion (Text.unpack s) = return v parseJSON json = JSON.typeMismatch "Version" json hasVersionTag :: Version -> Text -> Bool hasVersionTag v tag = List.any (\(t,_n) -> t == tag) (version_tags v) experimentalVersion :: Version experimentalVersion = stableVersion {version_tags = [(versionTagQuicker,0)]} stableVersion :: Version stableVersion = "1.6" versionTagQuicker :: Text versionTagQuicker = "quicker" readVersion :: String -> Maybe Version readVersion = parseReadP $ do version_branch <- Read.sepBy1 (Read.read <$> Read.munch1 Char.isDigit) (Read.char '.') version_tags <- Read.many $ (,) <$> (Text.pack <$ Read.char '-' <*> Read.munch1 Char.isAlpha) <*> (Read.read <$> Read.munch1 Char.isDigit <|> return 0) return Version{..} parseReadP :: Read.ReadP a -> String -> Maybe a parseReadP p s = let p' = Read.readP_to_S p in listToMaybe $ do (x, "") <- p' s return x