]> Git — Sourcephile - doclang.git/blob - Data/TreeSeq/Strict/Zipper.hs
Add HTML5 rendering of ToF.
[doclang.git] / Data / TreeSeq / Strict / Zipper.hs
1 module Data.TreeSeq.Strict.Zipper where
2
3 import Control.Arrow (Kleisli(..))
4 import Control.Category (Category(..), (>>>))
5 import Control.Applicative (Applicative(..), Alternative(..))
6 import Control.Monad (Monad(..))
7 import Data.Bool
8 import Data.Eq (Eq)
9 import Data.Function (($))
10 import Data.Functor ((<$>))
11 import Data.Int (Int)
12 import Data.List.NonEmpty (NonEmpty(..))
13 import Data.Maybe (Maybe(..), maybe, mapMaybe)
14 import Data.Monoid (Monoid(..))
15 import Data.Semigroup (Semigroup(..))
16 import Data.Sequence (ViewL(..), ViewR(..), (<|), (|>))
17 import Data.Typeable (Typeable)
18 import Prelude (undefined)
19 import Text.Show (Show(..))
20 import qualified Data.List as List
21 import qualified Data.List.NonEmpty as NonEmpty
22 import qualified Data.Sequence as Seq
23
24 import Data.TreeSeq.Strict (Trees, Tree(..))
25
26 -- * Type 'Zipper'
27 type Zipper k a = NonEmpty (Cursor k a)
28
29 -- | Return a 'Zipper' starting at the given 'Tree'.
30 zipper :: Tree k a -> Zipper k a
31 zipper t = Cursor mempty t mempty :| []
32
33 -- | Return a 'Zipper' starting at the left-most 'Tree' of the given 'Trees'.
34 zippers :: Trees k a -> [Zipper k a]
35 zippers ts =
36 case Seq.viewl ts of
37 EmptyL -> empty
38 l :< ls -> pure $ Cursor mempty l ls :| []
39
40 -- | Return the 'Cursor' after zipping the given 'Zipper' upto its last parent.
41 root :: Zipper k a -> Cursor k a
42 root = NonEmpty.head . List.last . runAxis axis_ancestor_or_self
43
44 -- | Like 'root', but concatenate the 'Cursor' into a 'Trees'.
45 roots :: Zipper k a -> Trees k a
46 roots z = cursor_preceding_siblings <> (cursor_self <| cursor_following_siblings)
47 where Cursor{..} = root z
48
49 -- | Return the keys within the 'TreeN' nodes
50 -- leading to the current 'Cursor' of the given 'Zipper'.
51 zipath :: Zipper k x -> [k]
52 zipath z =
53 List.reverse $
54 NonEmpty.toList z >>= \c ->
55 case cursor_self c of
56 TreeN k _ -> [k]
57 Tree0{} -> []
58
59 -- | Return the 'Tree's selected by the given 'Axis' from the given 'Zipper'.
60 select :: Axis k a -> Zipper k a -> [Tree k a]
61 select axis z = cursor_self . NonEmpty.head <$> runAxis axis z
62
63 -- | Return the filtered values selected by the given 'Axis' from the given 'Zipper'.
64 filter :: Axis k a -> (Zipper k a -> Maybe b) -> Zipper k a -> [b]
65 filter axis f z = f `mapMaybe` runAxis axis z
66
67 -- ** Type 'Cursor'
68 data Cursor k a
69 = Cursor
70 { cursor_preceding_siblings :: Trees k a
71 , cursor_self :: Tree k a
72 , cursor_following_siblings :: Trees k a
73 } deriving (Eq, Show, Typeable)
74
75 -- | Return the current 'Cursor' of a 'Zipper'.
76 cursor :: Zipper k a -> Cursor k a
77 cursor = NonEmpty.head
78
79 -- | Set the current 'Cursor' of a 'Zipper'.
80 setCursor :: Zipper k a -> Cursor k a -> Zipper k a
81 setCursor (_c :| cs) c = c :| cs
82
83 -- | Return the 'Tree' currently under the 'Cursor'.
84 current :: Zipper k a -> Tree k a
85 current (Cursor _ t _ :| _) = t
86
87 -- ** Type 'Axis'
88 type Axis k a = AxisAlt [] k a
89
90 runAxis :: Axis k a -> Zipper k a -> [Zipper k a]
91 runAxis = runKleisli
92
93 -- ** Type 'AxisAlt'
94 -- | Like 'Axis', but generalized with 'Alternative'.
95 --
96 -- Useful to return a 'Maybe' instead of a list.
97 type AxisAlt f k a = Kleisli f (Zipper k a) (Zipper k a)
98
99 runAxisAlt :: AxisAlt f k a -> Zipper k a -> f (Zipper k a)
100 runAxisAlt = runKleisli
101
102 -- ** Axis @repeat@
103 -- | Collect all 'Zipper's along a given axis,
104 -- including the first 'Zipper'.
105 axis_repeat :: AxisAlt Maybe k a -> Axis k a
106 axis_repeat f = Kleisli $ \z -> z : maybe [] (runAxis $ axis_repeat f) (runAxisAlt f z)
107
108 -- | Collect all 'Zipper's along a given axis,
109 -- excluding the starting 'Zipper'.
110 axis_repeat_without_self :: AxisAlt Maybe k a -> Axis k a
111 axis_repeat_without_self f = Kleisli $ \z -> maybe [] (runAxis $ axis_repeat f) (runAxisAlt f z)
112
113 -- ** Axis @filter@
114 axis_filter :: Axis k a -> (Zipper k a -> Bool) -> Axis k a
115 axis_filter axis f = Kleisli $ \z -> List.filter f (runAxis axis z)
116 infixl 5 `axis_filter`
117
118 axis_filter_current :: Axis k a -> (Tree k a -> Bool) -> Axis k a
119 axis_filter_current axis f = Kleisli $ \z -> List.filter (f . current) (runAxis axis z)
120 infixl 5 `axis_filter_current`
121
122 -- ** Axis @first@
123 axis_first :: Axis k a -> Axis k a
124 axis_first axis = Kleisli $ List.take 1 . runAxis axis
125
126 -- ** Axis @last@
127 axis_last :: Axis k a -> Axis k a
128 axis_last axis = Kleisli $ List.take 1 . List.reverse . runAxis axis
129
130 -- ** Axis @at@
131 axis_at :: Alternative f => Axis k a -> Int -> AxisAlt f k a
132 axis_at axis i = Kleisli $ \z ->
133 case List.drop i $ runAxis axis z of
134 [] -> empty
135 a:_ -> pure a
136 infixl 5 `axis_at`
137
138 -- ** Axis @self@
139 axis_self :: Applicative f => AxisAlt f k a
140 axis_self = Kleisli pure
141
142 -- ** Axis @child@
143 axis_child :: Axis k a
144 axis_child =
145 axis_child_first >>>
146 axis_repeat axis_following_sibling_nearest
147
148 axis_child_lookup_first :: Alternative f => (k -> Bool) -> AxisAlt f k a
149 axis_child_lookup_first fk = Kleisli $ listHead . runAxis (axis_child_lookup fk)
150
151 axis_child_lookup :: (k -> Bool) -> Axis k a
152 axis_child_lookup fk = Kleisli $ \z@(Cursor _ps t _fs :| _) ->
153 let ns = nodesTree t in
154 (<$> Seq.findIndicesL flt ns) $ \i ->
155 let (ps, ps') = Seq.splitAt i ns in
156 case Seq.viewl ps' of
157 EmptyL -> undefined
158 l :< ls -> Cursor ps l ls :| NonEmpty.toList z
159 where
160 flt = \case
161 TreeN k _ -> fk k
162 Tree0{} -> False
163
164 axis_child_first :: Alternative f => AxisAlt f k a
165 axis_child_first = Kleisli $ \z@(Cursor _ps t _fs :| _) ->
166 case Seq.viewl $ nodesTree t of
167 EmptyL -> empty
168 l :< ls -> pure $ Cursor mempty l ls :| NonEmpty.toList z
169
170 axis_child_last :: Alternative f => AxisAlt f k a
171 axis_child_last = Kleisli $ \z@(Cursor _ps t _fs :| _) ->
172 case Seq.viewr $ nodesTree t of
173 EmptyR -> empty
174 rs :> r -> pure $ Cursor rs r mempty :| NonEmpty.toList z
175
176 -- ** Axis @ancestor@
177 axis_ancestor :: Axis k a
178 axis_ancestor = axis_repeat_without_self axis_parent
179
180 axis_ancestor_or_self :: Axis k a
181 axis_ancestor_or_self = axis_repeat axis_parent
182
183 axis_root :: Alternative f => AxisAlt f k a
184 axis_root = Kleisli $ pure . List.last . runAxis axis_ancestor_or_self
185
186 -- ** Axis @descendant@
187 axis_descendant_or_self :: Axis k a
188 axis_descendant_or_self =
189 Kleisli $ collect_child []
190 where
191 collect_child acc z =
192 z : maybe acc
193 (collect_following_first acc)
194 (runAxisAlt axis_child_first z)
195 collect_following_first acc z =
196 collect_child
197 (maybe acc
198 (collect_following_first acc)
199 (runAxisAlt axis_following_sibling_nearest z)
200 ) z
201
202 axis_descendant_or_self_reverse :: Axis k a
203 axis_descendant_or_self_reverse = Kleisli go
204 where go z = z : List.concatMap go (List.reverse $ runAxis axis_child z)
205
206 axis_descendant :: Axis k a
207 axis_descendant = Kleisli $ List.tail . runAxis axis_descendant_or_self
208
209 -- ** Axis @preceding@
210 axis_preceding_sibling :: Axis k a
211 axis_preceding_sibling = axis_repeat_without_self axis_preceding_sibling_nearest
212
213 axis_preceding_sibling_nearest :: Alternative f => AxisAlt f k a
214 axis_preceding_sibling_nearest = Kleisli $ \(Cursor ps t fs :| cs) ->
215 case Seq.viewr ps of
216 EmptyR -> empty
217 rs :> r -> pure $ Cursor rs r (t <| fs) :| cs
218
219 axis_preceding_sibling_farthest :: Alternative f => AxisAlt f k a
220 axis_preceding_sibling_farthest = Kleisli $ \z@(Cursor ps t fs :| cs) ->
221 case Seq.viewl (ps |> t) of
222 EmptyL -> pure z
223 l :< ls -> pure $ Cursor mempty l (ls<>fs) :| cs
224
225 axis_preceding :: Axis k a
226 axis_preceding =
227 axis_ancestor_or_self >>>
228 axis_preceding_sibling >>>
229 axis_descendant_or_self_reverse
230
231 -- ** Axis @following@
232 axis_following_sibling :: Axis k a
233 axis_following_sibling = axis_repeat_without_self axis_following_sibling_nearest
234
235 axis_following_sibling_nearest :: Alternative f => AxisAlt f k a
236 axis_following_sibling_nearest = Kleisli $ \(Cursor ps t fs :| cs) ->
237 case Seq.viewl fs of
238 EmptyL -> empty
239 l :< ls -> pure $ Cursor (ps |> t) l ls :| cs
240
241 axis_following_sibling_farthest :: Alternative f => AxisAlt f k a
242 axis_following_sibling_farthest = Kleisli $ \z@(Cursor ps t fs :| cs) ->
243 case Seq.viewr (t <| fs) of
244 EmptyR -> pure z
245 rs :> r -> pure $ Cursor (ps<>rs) r mempty :| cs
246
247 axis_following :: Axis k a
248 axis_following =
249 axis_ancestor_or_self >>>
250 axis_following_sibling >>>
251 axis_descendant_or_self
252
253 -- ** Axis @parent@
254 axis_parent :: Alternative f => AxisAlt f k a
255 axis_parent = Kleisli $ \(Cursor ps t fs :| cs) ->
256 case cs of
257 Cursor ps' (TreeN k _) fs' : cs' ->
258 pure $ Cursor ps' (TreeN k $ (ps |> t) <> fs) fs' :| cs'
259 _ -> empty
260
261 -- * Utilities
262 nodesTree :: Tree k a -> Trees k a
263 nodesTree Tree0{} = mempty
264 nodesTree (TreeN _k ts) = ts
265
266 listHead :: Alternative f => [a] -> f a
267 listHead [] = empty
268 listHead (a:_) = pure a