]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Core/Methods/Matrix/Accelerate/Utils.hs
G.API.Ngrams: add newNgramsFromNgramsStatePatch
[gargantext.git] / src / Gargantext / Core / Methods / Matrix / Accelerate / Utils.hs
1 {-|
2 Module : Gargantext.Core.Methods.Matrix.Accelerate.Utils
3 Description :
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 This module aims at implementig distances of terms context by context is
11 the same referential of corpus.
12
13 Implementation use Accelerate library which enables GPU and CPU computation:
14
15 * Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover.
16 [Accelerating Haskell Array Codes with Multicore GPUs][CKLM+11].
17 In _DAMP '11: Declarative Aspects of Multicore Programming_, ACM, 2011.
18
19 * Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, and Ryan R. Newton.
20 [Type-safe Runtime Code Generation: Accelerate to LLVM][MCGN15].
21 In _Haskell '15: The 8th ACM SIGPLAN Symposium on Haskell_, ACM, 2015.
22
23 -}
24
25 {-# LANGUAGE TypeFamilies #-}
26 {-# LANGUAGE TypeOperators #-}
27 {-# LANGUAGE ScopedTypeVariables #-}
28 {-# LANGUAGE ViewPatterns #-}
29
30 module Gargantext.Core.Methods.Matrix.Accelerate.Utils
31 where
32
33 import qualified Data.Foldable as P (foldl1)
34 import Debug.Trace (trace)
35 import Data.Array.Accelerate
36 import Data.Array.Accelerate.Interpreter (run)
37 import qualified Gargantext.Prelude as P
38
39 -----------------------------------------------------------------------
40 runExp :: Elt e => Exp e -> e
41 runExp e = indexArray (run (unit e)) Z
42
43 -----------------------------------------------------------------------
44 -- | Define a vector
45 --
46 -- >>> vector 3
47 -- Vector (Z :. 3) [0,1,2]
48 vector :: Elt c => Int -> [c] -> (Array (Z :. Int) c)
49 vector n l = fromList (Z :. n) l
50
51 -- | Define a matrix
52 --
53 -- >>> matrix 3 ([1..] :: [Double])
54 -- Matrix (Z :. 3 :. 3)
55 -- [ 1.0, 2.0, 3.0,
56 -- 4.0, 5.0, 6.0,
57 -- 7.0, 8.0, 9.0]
58 matrix :: Elt c => Int -> [c] -> Matrix c
59 matrix n l = fromList (Z :. n :. n) l
60
61 -- | Two ways to get the rank (as documentation)
62 --
63 -- >>> rank (matrix 3 ([1..] :: [Int]))
64 -- 2
65 rank :: (Matrix a) -> Int
66 rank m = arrayRank $ arrayShape m
67
68 -----------------------------------------------------------------------
69 -- | Dimension of a square Matrix
70 -- How to force use with SquareMatrix ?
71 type Dim = Int
72
73 -- | Get Dimension of a square Matrix
74 --
75 -- >>> dim (matrix 3 ([1..] :: [Int]))
76 -- 3
77 dim :: Matrix a -> Dim
78 dim m = n
79 where
80 Z :. _ :. n = arrayShape m
81 -- indexTail (arrayShape m)
82
83 -----------------------------------------------------------------------
84
85 -- | Sum of a Matrix by Column
86 --
87 -- >>> run $ matSumCol 3 (use $ matrix 3 [1..])
88 -- Matrix (Z :. 3 :. 3)
89 -- [ 12.0, 15.0, 18.0,
90 -- 12.0, 15.0, 18.0,
91 -- 12.0, 15.0, 18.0]
92 matSumCol :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
93 matSumCol r mat = replicate (constant (Z :. (r :: Int) :. All)) $ sum $ transpose mat
94
95 matSumCol' :: Matrix Double -> Matrix Double
96 matSumCol' m = run $ matSumCol n m'
97 where
98 n = dim m
99 m' = use m
100
101
102 -- | Proba computes de probability matrix: all cells divided by thee sum of its column
103 -- if you need get the probability on the lines, just transpose it
104 --
105 -- >>> run $ matProba 3 (use $ matrix 3 [1..])
106 -- Matrix (Z :. 3 :. 3)
107 -- [ 8.333333333333333e-2, 0.13333333333333333, 0.16666666666666666,
108 -- 0.3333333333333333, 0.3333333333333333, 0.3333333333333333,
109 -- 0.5833333333333334, 0.5333333333333333, 0.5]
110 matProba :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
111 matProba d mat = zipWith (/) mat (matSumCol d mat)
112
113 -- | Diagonal of the matrix
114 --
115 -- >>> run $ diag (use $ matrix 3 ([1..] :: [Int]))
116 -- Vector (Z :. 3) [1,5,9]
117 diag :: Elt e
118 => Acc (Matrix e)
119 -> Acc (Vector e)
120 diag m = backpermute (indexTail (shape m))
121 (lift1 (\(Z :. x) -> (Z :. x :. (x :: Exp Int))))
122 m
123
124 -- | Divide by the Diagonal of the matrix
125 --
126 -- >>> run $ divByDiag 3 (use $ matrix 3 ([1..] :: [Double]))
127 -- Matrix (Z :. 3 :. 3)
128 -- [ 1.0, 0.4, 0.3333333333333333,
129 -- 4.0, 1.0, 0.6666666666666666,
130 -- 7.0, 1.6, 1.0]
131 divByDiag :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
132 divByDiag d mat = zipWith (/) mat (replicate (constant (Z :. (d :: Int) :. All)) $ diag mat)
133
134 -----------------------------------------------------------------------
135 -- | Filters the matrix with the minimum of maximums
136 --
137 -- >>> run $ matMiniMax $ use $ matrix 3 [1..]
138 -- Matrix (Z :. 3 :. 3)
139 -- [ 0.0, 4.0, 7.0,
140 -- 0.0, 5.0, 8.0,
141 -- 0.0, 6.0, 9.0]
142 matMiniMax :: (Elt a, Ord a, P.Num a)
143 => Acc (Matrix a)
144 -> Acc (Matrix a)
145 matMiniMax m = filterWith' miniMax' (constant 0) m
146 where
147 miniMax' = the $ minimum $ maximum m
148
149
150 -- | Filters the matrix with a constant
151 --
152 -- >>> run $ matFilter 5 $ use $ matrix 3 [1..]
153 -- Matrix (Z :. 3 :. 3)
154 -- [ 0.0, 0.0, 7.0,
155 -- 0.0, 0.0, 8.0,
156 -- 0.0, 6.0, 9.0]
157 filter' :: Double -> Acc (Matrix Double) -> Acc (Matrix Double)
158 filter' t m = filterWith t 0 m
159
160 filterWith :: Double -> Double -> Acc (Matrix Double) -> Acc (Matrix Double)
161 filterWith t v m = map (\x -> ifThenElse (x > (constant t)) x (constant v)) (transpose m)
162
163 filterWith' :: (Elt a, Ord a) => Exp a -> Exp a -> Acc (Matrix a) -> Acc (Matrix a)
164 filterWith' t v m = map (\x -> ifThenElse (x > t) x v) m
165
166
167
168 -- run $ (identityMatrix (DAA.constant (10::Int)) :: DAA.Acc (DAA.Matrix Int)) Matrix (Z :. 10 :. 10)
169 identityMatrix :: Num a => Exp Int -> Acc (Matrix a)
170 identityMatrix n =
171 let zeros = fill (index2 n n) 0
172 ones = fill (index1 n) 1
173 in
174 permute const zeros (\(unindex1 -> i) -> index2 i i) ones
175
176
177 eyeMatrix :: Num a => Dim -> Acc (Matrix a)
178 eyeMatrix n' =
179 let ones = fill (index2 n n) 1
180 zeros = fill (index1 n) 0
181 n = constant n'
182 in
183 permute const ones (\(unindex1 -> i) -> index2 i i) zeros
184
185 -- | TODO use Lenses
186 data Direction = MatCol (Exp Int) | MatRow (Exp Int) | Diag
187
188 nullOf :: Num a => Dim -> Direction -> Acc (Matrix a)
189 nullOf n' dir =
190 let ones = fill (index2 n n) 1
191 zeros = fill (index2 n n) 0
192 n = constant n'
193 in
194 permute const ones ( lift1 ( \(Z :. (i :: Exp Int) :. (_j:: Exp Int))
195 -> case dir of
196 MatCol m -> (Z :. i :. m)
197 MatRow m -> (Z :. m :. i)
198 Diag -> (Z :. i :. i)
199 )
200 )
201 zeros
202
203 nullOfWithDiag :: Num a => Dim -> Direction -> Acc (Matrix a)
204 nullOfWithDiag n dir = zipWith (*) (nullOf n dir) (nullOf n Diag)
205
206
207 divide :: (Elt a, Ord a, P.Fractional (Exp a), P.Num a)
208 => Acc (Matrix a) -> Acc (Matrix a) -> Acc (Matrix a)
209 divide = zipWith divide'
210 where
211 divide' a b = ifThenElse (b > (constant 0))
212 (a / b)
213 (constant 0)
214
215 -- | Nominator
216 sumRowMin :: (Num a, Ord a) => Dim -> Acc (Matrix a) -> Acc (Matrix a)
217 sumRowMin n m = {-trace (P.show $ run m') $-} m'
218 where
219 m' = reshape (shape m) vs
220 vs = P.foldl1 (++)
221 $ P.map (\z -> sumRowMin1 n (constant z) m) [0..n-1]
222
223 sumRowMin1 :: (Num a, Ord a) => Dim -> Exp Int -> Acc (Matrix a) -> Acc (Vector a)
224 sumRowMin1 n x m = trace (P.show (run m,run $ transpose m)) $ m''
225 where
226 m'' = sum $ zipWith min (transpose m) m
227 _m' = zipWith (*) (zipWith (*) (nullOf n (MatCol x)) $ nullOfWithDiag n (MatRow x)) m
228
229 -- | Denominator
230 sumColMin :: (Num a, Ord a) => Dim -> Acc (Matrix a) -> Acc (Matrix a)
231 sumColMin n m = reshape (shape m) vs
232 where
233 vs = P.foldl1 (++)
234 $ P.map (\z -> sumColMin1 n (constant z) m) [0..n-1]
235
236
237 sumColMin1 :: (Num a) => Dim -> Exp Int -> Acc (Matrix a) -> Acc (Matrix a)
238 sumColMin1 n x m = zipWith (*) (nullOfWithDiag n (MatCol x)) m
239
240
241
242 {- | WIP fun with indexes
243 selfMatrix :: Num a => Dim -> Acc (Matrix a)
244 selfMatrix n' =
245 let zeros = fill (index2 n n) 0
246 ones = fill (index2 n n) 1
247 n = constant n'
248 in
249 permute const ones ( lift1 ( \(Z :. (i :: Exp Int) :. (_j:: Exp Int))
250 -> -- ifThenElse (i /= j)
251 -- (Z :. i :. j)
252 (Z :. i :. i)
253 )) zeros
254
255 selfMatrix' :: (Elt a, P.Num (Exp a)) => Array DIM2 a -> Matrix a
256 selfMatrix' m' = run $ selfMatrix n
257 where
258 n = dim m'
259 m = use m'
260 -}
261 -------------------------------------------------
262 diagNull :: Num a => Dim -> Acc (Matrix a) -> Acc (Matrix a)
263 diagNull n m = zipWith (*) m eye
264 where
265 eye = eyeMatrix n
266
267 -------------------------------------------------
268 crossProduct :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
269 crossProduct n m = {-trace (P.show (run m',run m'')) $-} zipWith (*) m' m''
270 where
271 m' = cross n m
272 m'' = transpose $ cross n m
273
274
275 crossT :: Matrix Double -> Matrix Double
276 crossT = run . transpose . use
277
278 crossProduct' :: Matrix Double -> Matrix Double
279 crossProduct' m = run $ crossProduct n m'
280 where
281 n = dim m
282 m' = use m
283
284 runWith :: (Arrays c, Elt a1)
285 => (Dim -> Acc (Matrix a1) -> a2 -> Acc c)
286 -> Matrix a1
287 -> a2
288 -> c
289 runWith f m = run . f (dim m) (use m)
290
291 -- | cross
292 cross :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
293 cross n mat = diagNull n (matSumCol n $ diagNull n mat)
294
295 cross' :: Matrix Double -> Matrix Double
296 cross' mat = run $ cross n mat'
297 where
298 mat' = use mat
299 n = dim mat
300
301
302 {-
303 -- | Hypothesis to test maybe later (or not)
304 -- TODO ask accelerate for instances to ease such writtings:
305 p_ :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
306 p_ m = zipWith (/) m (n_ m)
307 where
308 n_ :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
309 n_ m = backpermute (shape m)
310 (lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int))
311 -> (ifThenElse (i < j) (lift (Z :. j :. j)) (lift (Z :. i :. i)) :: Exp DIM2)
312 )
313 ) m
314 -}
315
316 theMatrix :: Int -> Matrix Int
317 theMatrix n = matrix n (dataMatrix n)
318 where
319 dataMatrix :: Int -> [Int]
320 dataMatrix x | (P.==) x 2 = [ 1, 1
321 , 1, 2
322 ]
323
324 | (P.==) x 3 = [ 1, 1, 2
325 , 1, 2, 3
326 , 2, 3, 4
327 ]
328 | (P.==) x 4 = [ 1, 1, 2, 3
329 , 1, 2, 3, 4
330 , 2, 3, 4, 5
331 , 3, 4, 5, 6
332 ]
333 | P.otherwise = P.undefined
334
335 {-
336 theResult :: Int -> Matrix Double
337 theResult n | (P.==) n 2 = let r = 1.6094379124341003 in [ 0, r, r, 0]
338 | P.otherwise = [ 1, 1 ]
339 -}
340
341
342 colMatrix :: Elt e
343 => Int -> [e] -> Acc (Array ((Z :. Int) :. Int) e)
344 colMatrix n ns = replicate (constant (Z :. (n :: Int) :. All)) v
345 where
346 v = use $ vector (P.length ns) ns
347
348 -----------------------------------------------------------------------
349