]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Core/Text/Terms.hs
G.API.Ngrams: add newNgramsFromNgramsStatePatch
[gargantext.git] / src / Gargantext / Core / Text / Terms.hs
1 {-|
2 Module : Gargantext.Core.Text.Ngrams
3 Description : Ngrams definition and tools
4 Copyright : (c) CNRS, 2017 - present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 An @n-gram@ is a contiguous sequence of n items from a given sample of
11 text. In Gargantext application the items are words, n is a non negative
12 integer.
13
14 Using Latin numerical prefixes, an n-gram of size 1 is referred to as a
15 "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size
16 3 is a "trigram". English cardinal numbers are sometimes used, e.g.,
17 "four-gram", "five-gram", and so on.
18
19 Source: https://en.wikipedia.org/wiki/Ngrams
20
21 TODO
22 group Ngrams -> Tree
23 compute occ by node of Tree
24 group occs according groups
25
26 compute cooccurrences
27 compute graph
28
29 -}
30
31 {-# LANGUAGE TemplateHaskell #-}
32 {-# LANGUAGE ConstrainedClassMethods #-}
33
34 module Gargantext.Core.Text.Terms
35 where
36
37 import Control.Lens
38 import Data.Map (Map)
39 import qualified Data.Map as Map
40 import Data.Text (Text)
41 import Data.Traversable
42 import qualified Data.List as List
43 import qualified Data.Set as Set
44 import qualified Data.Text as Text
45 import GHC.Base (String)
46 import GHC.Generics (Generic)
47
48 import Gargantext.Core
49 import Gargantext.Core.Flow.Types
50 import Gargantext.Core.Text (sentences, HasText(..))
51 import Gargantext.Core.Text.Terms.Eleve (mainEleveWith, Tries, Token, buildTries, toToken)
52 import Gargantext.Core.Text.Terms.Mono (monoTerms)
53 import Gargantext.Core.Text.Terms.Mono.Stem (stem)
54 import Gargantext.Core.Text.Terms.Mono.Token.En (tokenize)
55 import Gargantext.Core.Text.Terms.Multi (multiterms)
56 import Gargantext.Core.Types
57 import Gargantext.Database.Prelude (Cmd)
58 import Gargantext.Database.Schema.Ngrams (Ngrams(..), NgramsType(..), ngramsTerms, text2ngrams)
59 import Gargantext.Prelude
60
61
62 data TermType lang
63 = Mono { _tt_lang :: !lang }
64 | Multi { _tt_lang :: !lang }
65 | MonoMulti { _tt_lang :: !lang }
66 | Unsupervised { _tt_lang :: !lang
67 , _tt_windowSize :: !Int
68 , _tt_ngramsSize :: !Int
69 , _tt_model :: !(Maybe (Tries Token ()))
70 }
71 deriving Generic
72
73 makeLenses ''TermType
74 --group :: [Text] -> [Text]
75 --group = undefined
76
77 -- remove Stop Words
78 -- map (filter (\t -> not . elem t)) $
79 ------------------------------------------------------------------------
80 -- | Sugar to extract terms from text (hiddeng mapM from end user).
81 --extractTerms :: Traversable t => TermType Lang -> t Text -> IO (t [Terms])
82 extractTerms :: TermType Lang -> [Text] -> IO [[Terms]]
83
84 extractTerms (Unsupervised l n s m) xs = mapM (terms (Unsupervised l n s (Just m'))) xs
85 where
86 m' = case m of
87 Just m''-> m''
88 Nothing -> newTries n (Text.intercalate " " xs)
89
90 extractTerms termTypeLang xs = mapM (terms termTypeLang) xs
91
92
93 ------------------------------------------------------------------------
94 withLang :: HasText a
95 => TermType Lang
96 -> [DocumentWithId a]
97 -> TermType Lang
98 withLang (Unsupervised l n s m) ns = Unsupervised l n s m'
99 where
100 m' = case m of
101 Nothing -> -- trace ("buildTries here" :: String)
102 Just $ buildTries n ( fmap toToken
103 $ uniText
104 $ Text.intercalate " . "
105 $ List.concat
106 $ map hasText ns
107 )
108 just_m -> just_m
109 withLang l _ = l
110
111 ------------------------------------------------------------------------
112 class ExtractNgramsT h
113 where
114 extractNgramsT :: HasText h
115 => TermType Lang
116 -> h
117 -> Cmd err (Map Ngrams (Map NgramsType Int))
118
119 filterNgramsT :: Int -> Map Ngrams (Map NgramsType Int)
120 -> Map Ngrams (Map NgramsType Int)
121 filterNgramsT s ms = Map.fromList $ map filter' $ Map.toList ms
122 where
123 filter' (ng,y)
124 | Text.length (ng ^. ngramsTerms) < s = (ng,y)
125 | otherwise = (text2ngrams (Text.take s (ng ^. ngramsTerms)), y)
126
127
128 -- =======================================================
129
130 -- | Terms from Text
131 -- Mono : mono terms
132 -- Multi : multi terms
133 -- MonoMulti : mono and multi
134 -- TODO : multi terms should exclude mono (intersection is not empty yet)
135 terms :: TermType Lang -> Text -> IO [Terms]
136 terms (Mono lang) txt = pure $ monoTerms lang txt
137 terms (Multi lang) txt = multiterms lang txt
138 terms (MonoMulti lang) txt = terms (Multi lang) txt
139 terms (Unsupervised lang n s m) txt = termsUnsupervised (Unsupervised lang n s (Just m')) txt
140 where
141 m' = maybe (newTries n txt) identity m
142 -- terms (WithList list) txt = pure . concat $ extractTermsWithList list txt
143 ------------------------------------------------------------------------
144
145 text2term :: Lang -> [Text] -> Terms
146 text2term _ [] = Terms [] Set.empty
147 text2term lang txt = Terms txt (Set.fromList $ map (stem lang) txt)
148
149 isPunctuation :: Text -> Bool
150 isPunctuation x = List.elem x $ (Text.pack . pure)
151 <$> ("!?(),;." :: String)
152
153 -- | Unsupervised ngrams extraction
154 -- language agnostic extraction
155 -- TODO: remove IO
156 -- TODO: newtype BlockText
157
158 type WindowSize = Int
159 type MinNgramSize = Int
160
161 termsUnsupervised :: TermType Lang -> Text -> IO [Terms]
162 termsUnsupervised (Unsupervised l n s m) =
163 pure
164 . map (text2term l)
165 . List.nub
166 . (List.filter (\l' -> List.length l' >= s))
167 . List.concat
168 . mainEleveWith (maybe (panic "no model") identity m) n
169 . uniText
170 termsUnsupervised _ = undefined
171
172 newTries :: Int -> Text -> Tries Token ()
173 newTries n t = buildTries n (fmap toToken $ uniText t)
174
175 -- | TODO removing long terms > 24
176 uniText :: Text -> [[Text]]
177 uniText = map (List.filter (not . isPunctuation))
178 . map tokenize
179 . sentences -- TODO get sentences according to lang
180 . Text.toLower
181