]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Text.hs
[FEAT] grouping ngrams better written (simplified) with semigroup. TODO: update the...
[gargantext.git] / src / Gargantext / Text.hs
1 {-|
2 Module : Gargantext.Text
3 Description : Ngrams tools
4 Copyright : (c) CNRS, 2018
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 Ngrams exctration.
11
12 Definitions of ngrams.
13 n non negative integer
14
15 -}
16
17 {-# LANGUAGE NoImplicitPrelude #-}
18 {-# LANGUAGE OverloadedStrings #-}
19
20 module Gargantext.Text
21 where
22
23 import qualified Data.Text as DT
24 --import Data.Text.IO (readFile)
25
26
27 import Data.Map.Strict (Map
28 , lookupIndex
29 --, fromList, keys
30 )
31
32 import Data.Text (Text, split)
33 import qualified Data.Map.Strict as M (filter)
34
35 -----------------------------------------------------------------
36 import Gargantext.Text.Ngrams
37 import Gargantext.Text.Metrics.Occurrences
38
39 import qualified Gargantext.Text.Metrics.FrequentItemSet as FIS
40 import Gargantext.Prelude hiding (filter)
41 -----------------------------------------------------------------
42
43 data Group = Group { _group_label :: Ngrams
44 , _group_ngrams :: [Ngrams]
45 } deriving (Show)
46
47
48 clean :: Text -> Text
49 clean txt = DT.map clean' txt
50 where
51 clean' '’' = '\''
52 clean' c = c
53
54 --noApax :: Ord a => Map a Occ -> Map a Occ
55 --noApax m = M.filter (>1) m
56
57 -- | /!\ indexes are not the same:
58
59 -- | Index ngrams from Map
60 --indexNgram :: Ord a => Map a Occ -> Map Index a
61 --indexNgram m = fromList (zip [1..] (keys m))
62
63 -- | Index ngrams from Map
64 --ngramIndex :: Ord a => Map a Occ -> Map a Index
65 --ngramIndex m = fromList (zip (keys m) [1..])
66
67 indexWith :: Ord a => Map a Occ -> [a] -> [Int]
68 indexWith m xs = unMaybe $ map (\x -> lookupIndex x m) xs
69
70 indexIt :: Ord a => [[a]] -> (Map a Int, [[Int]])
71 indexIt xs = (m, is)
72 where
73 m = sumOcc (map occ xs)
74 is = map (indexWith m) xs
75
76 list2fis :: Ord a => FIS.Frequency -> [[a]] -> (Map a Int, [FIS.Fis])
77 list2fis n xs = (m', fs)
78 where
79 (m, is) = indexIt xs
80 m' = M.filter (>50000) m
81 fs = FIS.all n is
82
83 text2fis :: FIS.Frequency -> [Text] -> (Map Text Int, [FIS.Fis])
84 text2fis n xs = list2fis n (map ngrams xs)
85
86 --text2fisWith :: FIS.Size -> FIS.Frequency -> [Text] -> (Map Text Int, [FIS.Fis])
87 --text2fisWith = undefined
88
89 -------------------------------------------------------------------
90 -- Contexts of text
91 sentences :: Text -> [Text]
92 sentences txt = split isStop txt
93
94 isStop :: Char -> Bool
95 isStop c = c `elem` ['.','?','!']
96
97
98 -- | https://en.wikipedia.org/wiki/Text_mining
99 testText_en :: Text
100 testText_en = DT.pack "Text mining, also referred to as text data mining, roughly equivalent to text analytics, is the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities). Text analysis involves information retrieval, lexical analysis to study word frequency distributions, pattern recognition, tagging/annotation, information extraction, data mining techniques including link and association analysis, visualization, and predictive analytics. The overarching goal is, essentially, to turn text into data for analysis, via application of natural language processing (NLP) and analytical methods. A typical application is to scan a set of documents written in a natural language and either model the document set for predictive classification purposes or populate a database or search index with the information extracted."
101
102 -- | https://fr.wikipedia.org/wiki/Fouille_de_textes
103 testText_fr :: Text
104 testText_fr = DT.pack "La fouille de textes ou « l'extraction de connaissances » dans les textes est une spécialisation de la fouille de données et fait partie du domaine de l'intelligence artificielle. Cette technique est souvent désignée sous l'anglicisme text mining. Elle désigne un ensemble de traitements informatiques consistant à extraire des connaissances selon un critère de nouveauté ou de similarité dans des textes produits par des humains pour des humains. Dans la pratique, cela revient à mettre en algorithme un modèle simplifié des théories linguistiques dans des systèmes informatiques d'apprentissage et de statistiques. Les disciplines impliquées sont donc la linguistique calculatoire, l'ingénierie des langues, l'apprentissage artificiel, les statistiques et l'informatique."
105
106 -- | Ngrams Test
107 -- >>> ngramsTest testText
108 -- 248
109 ngramsTest :: Text -> Int
110 ngramsTest x= length ws
111 where
112 --txt = concat <$> lines <$> clean <$> readFile filePath
113 txt = clean x
114 -- | Number of sentences
115 --ls = sentences $ txt
116 -- | Number of monograms used in the full text
117 ws = ngrams $ txt
118 -- | stem ngrams
119 -- TODO
120 -- group ngrams
121 --ocs = occ $ ws
122