2 Module : Gargantext.Text
3 Description : Ngrams tools
4 Copyright : (c) CNRS, 2018
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
12 Definitions of ngrams.
13 n non negative integer
17 {-# LANGUAGE NoImplicitPrelude #-}
18 {-# LANGUAGE OverloadedStrings #-}
20 module Gargantext.Text
23 import qualified Data.Text as DT
24 --import Data.Text.IO (readFile)
27 import Data.Map.Strict (Map
32 import Data.Text (Text, split)
33 import qualified Data.Map.Strict as M (filter)
35 -----------------------------------------------------------------
36 import Gargantext.Text.Ngrams
37 import Gargantext.Text.Metrics.Occurrences
39 import qualified Gargantext.Text.Metrics.FrequentItemSet as FIS
40 import Gargantext.Prelude hiding (filter)
41 -----------------------------------------------------------------
43 data Group = Group { _group_label :: Ngrams
44 , _group_ngrams :: [Ngrams]
49 clean txt = DT.map clean' txt
54 --noApax :: Ord a => Map a Occ -> Map a Occ
55 --noApax m = M.filter (>1) m
57 -- | /!\ indexes are not the same:
59 -- | Index ngrams from Map
60 --indexNgram :: Ord a => Map a Occ -> Map Index a
61 --indexNgram m = fromList (zip [1..] (keys m))
63 -- | Index ngrams from Map
64 --ngramIndex :: Ord a => Map a Occ -> Map a Index
65 --ngramIndex m = fromList (zip (keys m) [1..])
67 indexWith :: Ord a => Map a Occ -> [a] -> [Int]
68 indexWith m xs = unMaybe $ map (\x -> lookupIndex x m) xs
70 indexIt :: Ord a => [[a]] -> (Map a Int, [[Int]])
73 m = sumOcc (map occ xs)
74 is = map (indexWith m) xs
76 list2fis :: Ord a => FIS.Frequency -> [[a]] -> (Map a Int, [FIS.Fis])
77 list2fis n xs = (m', fs)
80 m' = M.filter (>50000) m
83 text2fis :: FIS.Frequency -> [Text] -> (Map Text Int, [FIS.Fis])
84 text2fis n xs = list2fis n (map ngrams xs)
86 --text2fisWith :: FIS.Size -> FIS.Frequency -> [Text] -> (Map Text Int, [FIS.Fis])
87 --text2fisWith = undefined
89 -------------------------------------------------------------------
91 sentences :: Text -> [Text]
92 sentences txt = split isStop txt
94 isStop :: Char -> Bool
95 isStop c = c `elem` ['.','?','!']
98 -- | https://en.wikipedia.org/wiki/Text_mining
100 testText_en = DT.pack "Text mining, also referred to as text data mining, roughly equivalent to text analytics, is the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities). Text analysis involves information retrieval, lexical analysis to study word frequency distributions, pattern recognition, tagging/annotation, information extraction, data mining techniques including link and association analysis, visualization, and predictive analytics. The overarching goal is, essentially, to turn text into data for analysis, via application of natural language processing (NLP) and analytical methods. A typical application is to scan a set of documents written in a natural language and either model the document set for predictive classification purposes or populate a database or search index with the information extracted."
102 -- | https://fr.wikipedia.org/wiki/Fouille_de_textes
104 testText_fr = DT.pack "La fouille de textes ou « l'extraction de connaissances » dans les textes est une spécialisation de la fouille de données et fait partie du domaine de l'intelligence artificielle. Cette technique est souvent désignée sous l'anglicisme text mining. Elle désigne un ensemble de traitements informatiques consistant à extraire des connaissances selon un critère de nouveauté ou de similarité dans des textes produits par des humains pour des humains. Dans la pratique, cela revient à mettre en algorithme un modèle simplifié des théories linguistiques dans des systèmes informatiques d'apprentissage et de statistiques. Les disciplines impliquées sont donc la linguistique calculatoire, l'ingénierie des langues, l'apprentissage artificiel, les statistiques et l'informatique."
107 -- >>> ngramsTest testText
109 ngramsTest :: Text -> Int
110 ngramsTest x= length ws
112 --txt = concat <$> lines <$> clean <$> readFile filePath
114 -- | Number of sentences
115 --ls = sentences $ txt
116 -- | Number of monograms used in the full text