]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Prelude.hs
[DOC+TESTS] contexts of texts.
[gargantext.git] / src / Gargantext / Prelude.hs
1 {-|
2 Module : Gargantext.Prelude
3 Description : Specific Prelude of the project
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 Here is a longer description of this module, containing some
11 commentary with @some markup@.
12 -}
13
14 {-# OPTIONS_GHC -fno-warn-name-shadowing #-}
15 {-# OPTIONS_GHC -fno-warn-type-defaults #-}
16
17 {-# LANGUAGE NoImplicitPrelude #-}
18
19 module Gargantext.Prelude
20 ( module Gargantext.Prelude
21 , module Protolude
22 , headMay, lastMay
23 , module Text.Show
24 , module Text.Read
25 , cs
26 , module Data.Maybe
27 , sortWith
28 )
29 where
30
31 import GHC.Exts (sortWith)
32
33 import Control.Monad.IO.Class (MonadIO)
34 import Data.Maybe (isJust, fromJust, maybe)
35 import Protolude ( Bool(True, False), Int, Int64, Double, Integer
36 , Fractional, Num, Maybe(Just,Nothing)
37 , Enum, Bounded, Float
38 , Floating, Char, IO
39 , pure, (>>=), (=<<), (<*>), (<$>), panic
40 , putStrLn
41 , head, flip
42 , Ord, Integral, Foldable, RealFrac, Monad, filter
43 , reverse, map, mapM, zip, drop, take, zipWith
44 , sum, fromIntegral, length, fmap, foldl, foldl'
45 , takeWhile, sqrt, undefined, identity
46 , abs, min, max, maximum, minimum, return, snd, truncate
47 , (+), (*), (/), (-), (.), ($), (&), (**), (^), (<), (>), log
48 , Eq, (==), (>=), (<=), (<>), (/=)
49 , (&&), (||), not, any
50 , fst, snd, toS
51 , elem, die, mod, div, const, either
52 , curry, uncurry, repeat
53 , otherwise, when
54 , undefined
55 , IO()
56 , compare
57 , on
58 )
59
60 -- TODO import functions optimized in Utils.Count
61 -- import Protolude hiding (head, last, all, any, sum, product, length)
62 -- import Gargantext.Utils.Count
63 import qualified Data.List as L hiding (head, sum)
64 import qualified Control.Monad as M
65
66 import Data.Map (Map)
67 import qualified Data.Map as M
68
69 import Data.Map.Strict (insertWith)
70 import qualified Data.Vector as V
71 import Safe (headMay, lastMay)
72 import Text.Show (Show(), show)
73 import Text.Read (Read())
74 import Data.String.Conversions (cs)
75
76
77 printDebug :: (Show a, MonadIO m) => [Char] -> a -> m ()
78 printDebug msg x = putStrLn $ msg <> " " <> show x
79 -- printDebug _ _ = pure ()
80
81
82 map2 :: (t -> b) -> [[t]] -> [[b]]
83 map2 fun = map (map fun)
84
85
86 -- Some Statistics sugar functions
87 -- Exponential Average
88 eavg :: [Double] -> Double
89 eavg (x:xs) = a*x + (1-a)*(eavg xs)
90 where a = 0.70
91 eavg [] = 0
92
93 -- Simple Average
94 mean :: Fractional a => [a] -> a
95 mean xs = if L.null xs then 0.0
96 else sum xs / fromIntegral (length xs)
97
98
99 sumMaybe :: Num a => [Maybe a] -> Maybe a
100 sumMaybe = fmap sum . M.sequence
101
102 variance :: Floating a => [a] -> a
103 variance xs = mean $ map (\x -> (x - m) ** 2) xs where
104 m = mean xs
105
106 deviation :: [Double] -> Double
107 deviation = sqrt . variance
108
109 movingAverage :: Fractional b => Int -> [b] -> [b]
110 movingAverage steps xs = map mean $ chunkAlong steps 1 xs
111
112 ma :: [Double] -> [Double]
113 ma = movingAverage 3
114
115 -- | splitEvery n == chunkAlong n n
116 splitEvery :: Int -> [a] -> [[a]]
117 splitEvery _ [] = []
118 splitEvery n xs =
119 let (h,t) = L.splitAt n xs
120 in h : splitEvery n t
121
122 -- | Function to split a range into chunks
123 chunkAlong :: Int -> Int -> [a] -> [[a]]
124 chunkAlong a b l = only (while dropAlong)
125 where
126 only = map (take a)
127 while = takeWhile (\x -> length x >= a)
128 dropAlong = L.scanl (\x _y -> drop b x) l ([1..] :: [Integer])
129
130 -- | Optimized version (Vector)
131 chunkAlong' :: Int -> Int -> V.Vector a -> V.Vector (V.Vector a)
132 chunkAlong' a b l = only (while dropAlong)
133 where
134 only = V.map (V.take a)
135 while = V.takeWhile (\x -> V.length x >= a)
136 dropAlong = V.scanl (\x _y -> V.drop b x) l (V.fromList [1..])
137
138 -- | TODO Inverse of chunk ? unchunkAlong ?
139 unchunkAlong :: Int -> Int -> [[a]] -> [a]
140 unchunkAlong = undefined
141
142
143 -- splitAlong [2,3,4] ("helloworld" :: [Char]) == ["he", "llo", "worl", "d"]
144 splitAlong :: [Int] -> [Char] -> [[Char]]
145 splitAlong _ [] = [] -- No list? done
146 splitAlong [] xs = [xs] -- No place to split at? Return the remainder
147 splitAlong (x:xs) ys = take x ys : splitAlong xs (drop x ys) -- take until our split spot, recurse with next split spot and list remainder
148
149 takeWhileM :: (Monad m) => (a -> Bool) -> [m a] -> m [a]
150 takeWhileM _ [] = return []
151 takeWhileM p (a:as) = do
152 v <- a
153 if p v
154 then do
155 vs <- takeWhileM p as
156 return (v:vs)
157 else return []
158
159 -- SUMS
160 -- To select the right algorithme according to the type:
161 -- https://github.com/mikeizbicki/ifcxt
162
163 sumSimple :: Num a => [a] -> a
164 sumSimple = L.foldl' (+) 0
165
166 -- | https://en.wikipedia.org/wiki/Kahan_summation_algorithm
167 sumKahan :: Num a => [a] -> a
168 sumKahan = snd . L.foldl' go (0,0)
169 where
170 go (c,t) i = ((t'-t)-y,t')
171 where
172 y = i-c
173 t' = t+y
174
175 -- | compute part of the dict
176 count2map :: (Ord k, Foldable t) => t k -> Map k Double
177 count2map xs = M.map (/ (fromIntegral (length xs))) (count2map' xs)
178
179 -- | insert in a dict
180 count2map' :: (Ord k, Foldable t) => t k -> Map k Double
181 count2map' xs = L.foldl' (\x y -> insertWith (+) y 1 x) M.empty xs
182
183
184 trunc :: (RealFrac a, Integral c, Integral b) => b -> a -> c
185 trunc n = truncate . (* 10^n)
186
187 trunc' :: Int -> Double -> Double
188 trunc' n x = fromIntegral $ truncate $ (x * 10^n)
189
190
191 ------------------------------------------------------------------------
192 bool2num :: Num a => Bool -> a
193 bool2num True = 1
194 bool2num False = 0
195
196 bool2double :: Bool -> Double
197 bool2double = bool2num
198
199 bool2int :: Bool -> Int
200 bool2int = bool2num
201 ------------------------------------------------------------------------
202
203 -- Normalizing && scaling data
204 scale :: [Double] -> [Double]
205 scale = scaleMinMax
206
207 scaleMinMax :: [Double] -> [Double]
208 scaleMinMax xs = map (\x -> (x - mi / (ma - mi + 1) )) xs'
209 where
210 ma = maximum xs'
211 mi = minimum xs'
212 xs' = map abs xs
213
214 scaleNormalize :: [Double] -> [Double]
215 scaleNormalize xs = map (\x -> (x - v / (m + 1))) xs'
216 where
217 v = variance xs'
218 m = mean xs'
219 xs' = map abs xs
220
221 normalize :: [Double] -> [Double]
222 normalize as = normalizeWith identity as
223
224 normalizeWith :: Fractional b => (a -> b) -> [a] -> [b]
225 normalizeWith extract bs = map (\x -> x/(sum bs')) bs'
226 where
227 bs' = map extract bs
228
229 -- Zip functions to add
230 zipFst :: ([b] -> [a]) -> [b] -> [(a, b)]
231 zipFst f xs = zip (f xs) xs
232
233 zipSnd :: ([a] -> [b]) -> [a] -> [(a, b)]
234 zipSnd f xs = zip xs (f xs)
235
236 -- | maximumWith
237 maximumWith :: (Ord a1, Foldable t) => (a2 -> a1) -> t a2 -> a2
238 maximumWith f = L.maximumBy (compare `on` f)
239