2 Module : Gargantext.Text.Ngrams
3 Description : Ngrams definition and tools
4 Copyright : (c) CNRS, 2017 - present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 An @n-gram@ is a contiguous sequence of n items from a given sample of
11 text. In Gargantext application the items are words, n is a non negative
14 Using Latin numerical prefixes, an n-gram of size 1 is referred to as a
15 "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size
16 3 is a "trigram". English cardinal numbers are sometimes used, e.g.,
17 "four-gram", "five-gram", and so on.
19 Source: https://en.wikipedia.org/wiki/Ngrams
23 compute occ by node of Tree
24 group occs according groups
31 {-# LANGUAGE NoImplicitPrelude #-}
32 {-# LANGUAGE OverloadedStrings #-}
33 {-# LANGUAGE DeriveGeneric #-}
34 {-# LANGUAGE TemplateHaskell #-}
36 module Gargantext.Text.Terms
40 import Data.Text (Text)
41 import Data.Traversable
42 import GHC.Base (String)
43 import GHC.Generics (Generic)
44 import Gargantext.Core
45 import Gargantext.Core.Types
46 import Gargantext.Prelude
47 import Gargantext.Text (sentences)
48 import Gargantext.Text.Terms.Eleve (mainEleveWith, Tries, Token, buildTries, toToken)
49 import Gargantext.Text.Terms.Mono (monoTerms)
50 import Gargantext.Text.Terms.Mono.Stem (stem)
51 import Gargantext.Text.Terms.Mono.Token.En (tokenize)
52 import Gargantext.Text.Terms.Multi (multiterms)
53 import qualified Data.List as List
54 import qualified Data.Set as Set
55 import qualified Data.Text as Text
58 = Mono { _tt_lang :: lang }
59 | Multi { _tt_lang :: lang }
60 | MonoMulti { _tt_lang :: lang }
61 | Unsupervised { _tt_lang :: lang
62 , _tt_windowSize :: Int
63 , _tt_ngramsSize :: Int
64 , _tt_model :: Maybe (Tries Token ())
69 --group :: [Text] -> [Text]
73 -- map (filter (\t -> not . elem t)) $
74 ------------------------------------------------------------------------
75 -- | Sugar to extract terms from text (hiddeng mapM from end user).
76 --extractTerms :: Traversable t => TermType Lang -> t Text -> IO (t [Terms])
77 extractTerms :: TermType Lang -> [Text] -> IO [[Terms]]
79 extractTerms (Unsupervised l n s m) xs = mapM (terms (Unsupervised l n s (Just m'))) xs
83 Nothing -> newTries n (Text.intercalate " " xs)
85 extractTerms termTypeLang xs = mapM (terms termTypeLang) xs
87 ------------------------------------------------------------------------
90 -- Multi : multi terms
91 -- MonoMulti : mono and multi
92 -- TODO : multi terms should exclude mono (intersection is not empty yet)
93 terms :: TermType Lang -> Text -> IO [Terms]
94 terms (Mono lang) txt = pure $ monoTerms lang txt
95 terms (Multi lang) txt = multiterms lang txt
96 terms (MonoMulti lang) txt = terms (Multi lang) txt
97 terms (Unsupervised lang n s m) txt = termsUnsupervised (Unsupervised lang n s (Just m')) txt
99 m' = maybe (newTries n txt) identity m
100 -- terms (WithList list) txt = pure . concat $ extractTermsWithList list txt
101 ------------------------------------------------------------------------
103 text2term :: Lang -> [Text] -> Terms
104 text2term _ [] = Terms [] Set.empty
105 text2term lang txt = Terms txt (Set.fromList $ map (stem lang) txt)
107 isPunctuation :: Text -> Bool
108 isPunctuation x = List.elem x $ (Text.pack . pure)
109 <$> ("!?(),;." :: String)
111 -- | Unsupervised ngrams extraction
112 -- language agnostic extraction
114 -- TODO: newtype BlockText
116 type WindowSize = Int
117 type MinNgramSize = Int
119 termsUnsupervised :: TermType Lang -> Text -> IO [Terms]
120 termsUnsupervised (Unsupervised l n s m) =
124 . (List.filter (\l' -> List.length l' >= s))
126 . mainEleveWith (maybe (panic "no model") identity m) n
128 termsUnsupervised _ = undefined
130 newTries :: Int -> Text -> Tries Token ()
131 newTries n t = buildTries n (fmap toToken $ uniText t)
133 -- | TODO removing long terms > 24
134 uniText :: Text -> [[Text]]
135 uniText = map (List.filter (not . isPunctuation))
137 . sentences -- | TODO get sentences according to lang