]> Git — Sourcephile - gargantext.git/blob - docs/search-api.org
[FIX] merge
[gargantext.git] / docs / search-api.org
1 #+TITLE: Searx API request
2
3 This is related to issue
4 https://gitlab.iscpif.fr/gargantext/haskell-gargantext/issues/70
5
6 #+begin_src restclient
7 :domain := "https://searx.frame.gargantext.org"
8 POST :domain/
9 Content-Type: application/x-www-form-urlencoded
10 category_general=1&q=banach%20space&pageno=1&time_range=None&language=en-US&format=json
11 #+end_src
12
13 #+RESULTS:
14 #+BEGIN_SRC js
15 {
16 "query": "banach space",
17 "number_of_results": 93700.0,
18 "results": [
19 {
20 "url": "https://en.wikipedia.org/wiki/Banach_space",
21 "title": "Banach space",
22 "engine": "wikipedia",
23 "parsed_url": [
24 "https",
25 "en.wikipedia.org",
26 "/wiki/Banach_space",
27 "",
28 "",
29 ""
30 ],
31 "engines": [
32 "wikipedia"
33 ],
34 "positions": [
35 1
36 ],
37 "score": 1.0,
38 "category": "general",
39 "pretty_url": "https://en.wikipedia.org/wiki/Banach_space"
40 },
41 {
42 "url": "http://mathworld.wolfram.com/BanachSpace.html",
43 "title": "Banach Space -- from Wolfram MathWorld",
44 "content": "10/05/2021 · A Banach space is a complete vector space with a norm . Two norms and are called equivalent if they give the same topology , which is equivalent to the existence of constants and such that. (1) and. (2) hold for all . In the finite-dimensional case, all norms are equivalent.",
45 "engine": "bing",
46 "parsed_url": [
47 "http",
48 "mathworld.wolfram.com",
49 "/BanachSpace.html",
50 "",
51 "",
52 ""
53 ],
54 "engines": [
55 "bing"
56 ],
57 "positions": [
58 1
59 ],
60 "score": 1.0,
61 "category": "general",
62 "pretty_url": "http://mathworld.wolfram.com/BanachSpace.html"
63 },
64 {
65 "url": "https://en.wikipedia.org/wiki/List_of_Banach_spaces",
66 "title": "List of Banach spaces - Wikipedia",
67 "content": "25 lignes · Classical Banach spaces. According to Diestel (1984, Chapter VII), the classical Banach …",
68 "engine": "bing",
69 "parsed_url": [
70 "https",
71 "en.wikipedia.org",
72 "/wiki/List_of_Banach_spaces",
73 "",
74 "",
75 ""
76 ],
77 "engines": [
78 "bing"
79 ],
80 "positions": [
81 2
82 ],
83 "score": 0.5,
84 "category": "general",
85 "pretty_url": "https://en.wikipedia.org/wiki/List_of_Banach_spaces"
86 },
87 {
88 "url": "https://encyclopediaofmath.org/wiki/Banach_space",
89 "title": "Banach space - Encyclopedia of Mathematics",
90 "content": "According to Diestel (1984, Chapter VII), the classical Banach spaces are those defined by Dunford & Schwartz (1958), which is the source for the following table. Here K denotes the field of real numbers or complex numbers and I is a closed and bounded interval [a,b]. The number p is a real number with 1 < p < ∞, and q is its Hölder conjugate (also with 1 < q < ∞), so that the next equation holds: $${\\displaystyle {\\frac {1}{q}}+{\\frac {1}{p}}=1,}$$According to Diestel (1984, Chapter VII), the classical Banach spaces are those defined by Dunford & Schwartz (1958), which is the source for the following table. Here K denotes the field of real numbers or complex numbers and I is a closed and bounded interval [a,b]. The number p is a real number with 1 < p < ∞, and q is its Hölder conjugate (also with 1 < q < ∞), so that the next equation holds: $${\\displaystyle {\\frac {1}{q}}+{\\frac {1}{p}}=1,}$$and thus $${\\displaystyle q={\\frac {p}{p-1}}.}$$The symbol Σ denotes a σ-algebra of sets, and Ξ denotes just an algebra of sets (for spaces only requiring finite additivity, such as the ba space). The symbol μ denotes a positive measure: that is, a real-valued positive set function defined on a σ-algebra which is countably additive.",
91 "engine": "bing",
92 "parsed_url": [
93 "https",
94 "encyclopediaofmath.org",
95 "/wiki/Banach_space",
96 "",
97 "",
98 ""
99 ],
100 "engines": [
101 "bing"
102 ],
103 "positions": [
104 3
105 ],
106 "score": 0.3333333333333333,
107 "category": "general",
108 "pretty_url": "https://encyclopediaofmath.org/wiki/Banach_space"
109 },
110 {
111 "url": "https://www.techopedia.com/definition/17852/banach-space",
112 "title": "What is Banach Space? - Definition from Techopedia",
113 "content": "22/03/2017 · In functional analysis, a Banach space is a normed vector space that allows vector length to be computed. When the vector space is normed, that means that each vector other than the zero vector has a length that is greater than zero. The length and distance between two vectors can thus be computed. The vector space is complete, meaning a Cauchy sequence of vectors in a Banach space …",
114 "engine": "bing",
115 "parsed_url": [
116 "https",
117 "www.techopedia.com",
118 "/definition/17852/banach-space",
119 "",
120 "",
121 ""
122 ],
123 "engines": [
124 "bing"
125 ],
126 "positions": [
127 4
128 ],
129 "score": 0.25,
130 "category": "general",
131 "pretty_url": "https://www.techopedia.com/definition/17852/banach-space"
132 },
133 {
134 "url": "https://www.sciencedirect.com/topics/mathematics/banach-spaces",
135 "title": "Banach Spaces - an overview | ScienceDirect Topics",
136 "content": "A Banach spaceis a complete normed linear space. Example 4.3 The spaces RN,CNare vector spaces which are also complete metric spaces with any of the norms ∥⋅∥p, hence they are Banach spaces. Similarly C(E), Lp(E) are Banach spaces with norms indicated above. □",
137 "engine": "bing",
138 "parsed_url": [
139 "https",
140 "www.sciencedirect.com",
141 "/topics/mathematics/banach-spaces",
142 "",
143 "",
144 ""
145 ],
146 "engines": [
147 "bing"
148 ],
149 "positions": [
150 5
151 ],
152 "score": 0.2,
153 "category": "general",
154 "pretty_url": "https://www.sciencedirect.com/topics/mathematics/banach-spaces"
155 },
156 {
157 "url": "https://people.math.gatech.edu/~heil/handouts/banach.pdf",
158 "title": "Banach Spaces - gatech.edu",
159 "content": "07/09/2006 · have already said that “a Banach space is complete” if every Cauchy sequence in the space converges. The term “complete sequences” defined in this section is a completely separate definition that applies to sets of vectors in a Hilbert or Banach space (although we …",
160 "engine": "bing",
161 "parsed_url": [
162 "https",
163 "people.math.gatech.edu",
164 "/~heil/handouts/banach.pdf",
165 "",
166 "",
167 ""
168 ],
169 "engines": [
170 "bing"
171 ],
172 "positions": [
173 6
174 ],
175 "score": 0.16666666666666666,
176 "category": "general",
177 "pretty_url": "https://people.math.gatech.edu/~heil/handouts/banach.pdf"
178 },
179 {
180 "url": "https://ncatlab.org/nlab/show/Banach+space",
181 "title": "Banach space in nLab",
182 "content": "",
183 "engine": "bing",
184 "parsed_url": [
185 "https",
186 "ncatlab.org",
187 "/nlab/show/Banach+space",
188 "",
189 "",
190 ""
191 ],
192 "engines": [
193 "bing"
194 ],
195 "positions": [
196 7
197 ],
198 "score": 0.14285714285714285,
199 "category": "general",
200 "pretty_url": "https://ncatlab.org/nlab/show/Banach+space"
201 },
202 {
203 "url": "https://www.numerade.com/books/chapter/structure-of-banach-spaces/",
204 "title": "Structure of Banach Spaces | Functional Analysis",
205 "content": "Structure of Banach Spaces, Functional Analysis and InfiniteDimensional Geometry - Marián Fabian, Petr Habala, Petr Hájek | All the textbook answers and step-b…",
206 "engine": "bing",
207 "parsed_url": [
208 "https",
209 "www.numerade.com",
210 "/books/chapter/structure-of-banach-spaces/",
211 "",
212 "",
213 ""
214 ],
215 "engines": [
216 "bing"
217 ],
218 "positions": [
219 8
220 ],
221 "score": 0.125,
222 "category": "general",
223 "pretty_url": "https://www.numerade.com/books/chapter/structure-of-banach-spaces/"
224 },
225 {
226 "url": "http://www.ma.huji.ac.il/~razk/iWeb/My_Site/Teaching_files/Banach.pdf",
227 "title": "2. Banach spaces - ma.huji.ac.il",
228 "content": "Definition 2.1A Banach space is a complete, normed, vector space. Comment 2.1Completeness is a metric space concept. In a normed space the metric is d(x,y)=x−y. Note that this metric satisfies the following “special\" properties: ¿ The underlying space is a vector space.",
229 "engine": "bing",
230 "parsed_url": [
231 "http",
232 "www.ma.huji.ac.il",
233 "/~razk/iWeb/My_Site/Teaching_files/Banach.pdf",
234 "",
235 "",
236 ""
237 ],
238 "engines": [
239 "bing"
240 ],
241 "positions": [
242 9
243 ],
244 "score": 0.1111111111111111,
245 "category": "general",
246 "pretty_url": "http://www.ma.huji.ac.il/~razk/iWeb/My_Site/Teaching_files/Banach.pdf"
247 }
248 ],
249 "answers": [],
250 "corrections": [],
251 "infoboxes": [
252 {
253 "infobox": "Banach space",
254 "id": "https://en.wikipedia.org/wiki/Banach_space",
255 "content": "In mathematics, more specifically in functional analysis, a Banach space (pronounced [ˈbanax]) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.",
256 "img_src": null,
257 "urls": [
258 {
259 "title": "Wikipedia",
260 "url": "https://en.wikipedia.org/wiki/Banach_space"
261 },
262 {
263 "title": "Wikidata",
264 "url": "https://www.wikidata.org/wiki/Q194397?uselang=en"
265 }
266 ],
267 "engine": "wikidata",
268 "attributes": [
269 {
270 "label": "Inception",
271 "value": "1920"
272 }
273 ]
274 }
275 ],
276 "suggestions": [],
277 "unresponsive_engines": []
278 }
279 // POST https://searx.frame.gargantext.org/
280 // HTTP/1.1 200 OK
281 // Server: nginx/1.14.2
282 // Date: Tue, 27 Jul 2021 17:20:48 GMT
283 // Content-Type: application/json
284 // Content-Length: 8020
285 // Connection: keep-alive
286 // Server-Timing: total;dur=1826.455, total_0_go;dur=248.527, total_1_wp;dur=352.718, total_2_bi;dur=628.671, total_3_wd;dur=1822.518, load_0_go;dur=234.185, load_1_wp;dur=348.323, load_2_bi;dur=595.242, load_3_wd;dur=1778.783
287 // Request duration: 2.159931s
288 #+END_SRC