]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Core/Viz/Graph/Tools/IGraph.hs
[FIX] clustering, order 2 similarity, ok
[gargantext.git] / src / Gargantext / Core / Viz / Graph / Tools / IGraph.hs
1 {-|
2 Module : Gargantext.Core.Viz.Graph.Tools.IGraph
3 Description : Tools to build Graph
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 Reference:
11 * Gábor Csárdi, Tamás Nepusz: The igraph software package for complex network research. InterJournal Complex Systems, 1695, 2006.
12
13 -}
14
15 module Gargantext.Core.Viz.Graph.Tools.IGraph
16 where
17
18 import Data.Serialize
19 import Data.Singletons (SingI)
20 import IGraph hiding (mkGraph, neighbors, edges, nodes, Node, Graph)
21 import Protolude
22 import Gargantext.Core.Viz.Graph.Index
23 import qualified Data.List as List
24 import qualified IGraph as IG
25 import qualified IGraph.Algorithms.Clique as IG
26 import qualified IGraph.Algorithms.Community as IG
27 import qualified IGraph.Random as IG
28 import qualified Data.Map as Map
29
30 ------------------------------------------------------------------
31 -- | Main Types
32 type Graph_Undirected = IG.Graph 'U () ()
33 type Graph_Directed = IG.Graph 'D () ()
34
35 type Node = IG.Node
36 type Graph = IG.Graph
37
38 ------------------------------------------------------------------
39 -- | Main Graph management Functions
40 neighbors :: IG.Graph d v e -> IG.Node -> [IG.Node]
41 neighbors = IG.neighbors
42
43 edges :: IG.Graph d v e -> [Edge]
44 edges = IG.edges
45
46 nodes :: IG.Graph d v e -> [IG.Node]
47 nodes = IG.nodes
48
49 ------------------------------------------------------------------
50 -- | Partitions
51 maximalCliques :: IG.Graph d v e -> [[Int]]
52 maximalCliques g = IG.maximalCliques g (min',max')
53 where
54 min' = 0
55 max' = 0
56
57 ------------------------------------------------------------------
58 type Seed = Int
59
60 spinglass :: Seed -> Map (Int, Int) Double -> IO [ClusterNode]
61 spinglass s g = toClusterNode
62 <$> map catMaybes
63 <$> map (map (\n -> Map.lookup n fromI))
64 <$> partitions_spinglass' s g''
65 where
66 g'' = mkGraphUfromEdges (Map.keys g')
67 (toI, fromI) = createIndices g
68 g' = toIndex toI g
69
70 -- | Tools to analyze graphs
71 partitions_spinglass' :: (Serialize v, Serialize e)
72 => Seed -> IG.Graph 'U v e -> IO [[Int]]
73 partitions_spinglass' s g = do
74 gen <- IG.withSeed s pure
75 pure $ IG.findCommunity g Nothing Nothing IG.spinglass gen
76
77
78 data ClusterNode = ClusterNode { cl_node_id :: Int
79 , cl_community_id :: Int
80 }
81
82 toClusterNode :: [[Int]] -> [ClusterNode]
83 toClusterNode ns = List.concat
84 $ map (\(cId, ns') -> map (\n -> ClusterNode n cId) ns')
85 $ List.zip [1..] ns
86
87 ------------------------------------------------------------------
88 mkGraph :: (SingI d, Ord v,
89 Serialize v, Serialize e) =>
90 [v] -> [LEdge e] -> IG.Graph d v e
91 mkGraph = IG.mkGraph
92
93 ------------------------------------------------------------------
94 mkGraphUfromEdges :: [(Int, Int)] -> Graph_Undirected
95 mkGraphUfromEdges es = mkGraph (List.replicate n ()) $ zip es $ repeat ()
96 where
97 (a,b) = List.unzip es
98 n = List.length (List.nub $ a <> b)
99
100 {-
101 mkGraphDfromEdges :: [(Int, Int)] -> Graph_Directed
102 mkGraphDfromEdges = undefined
103 -}