2 Module : Gargantext.Core.Viz.Graph.Bridgeness
3 Description : Bridgeness filter
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 Let be a graph Bridgeness filters inter-communities links in two ways.
11 If the partitions are known, filtering is uniform to expose the communities clearly for the beginners.
16 filters inter-communities links.
18 TODO use Map LouvainNodeId (Map LouvainNodeId)
21 {-# LANGUAGE BangPatterns #-}
23 module Gargantext.Core.Viz.Graph.Bridgeness -- (bridgeness)
26 import Data.Map.Strict (Map, fromListWith, lookup, toList, mapWithKey, elems)
27 import Data.Maybe (catMaybes)
28 import Data.Ord (Down(..))
30 import Data.Tuple.Extra (swap)
31 import Debug.Trace (trace)
32 import Gargantext.Core.Methods.Similarities (Similarity(..))
33 import Gargantext.Prelude
35 import Graph.Types (ClusterNode(..))
36 import qualified Data.List as List
37 import qualified Data.Map.Strict as Map
38 import qualified Data.Set as Set
39 import qualified Data.Tuple.Extra as Tuple
40 import qualified Data.IntMap as Dico
41 ----------------------------------------------------------------------
43 type Partitions = Map (Int, Int) Double -> IO [ClusterNode]
44 type Partitions' = Map (Int, Int) Double -> IO [Set NodeId]
45 ----------------------------------------------------------------------
46 nodeId2comId :: ClusterNode -> (NodeId, CommunityId)
47 nodeId2comId (ClusterNode i1 i2) = (i1, i2)
50 type CommunityId = Int
52 ----------------------------------------------------------------------
53 -- recursiveClustering : to get more granularity of a given clustering
54 -- tested with spinglass clustering only (WIP)
55 recursiveClustering' :: Partitions' -> Map (Int, Int) Double -> IO [[Set NodeId]]
56 recursiveClustering' f mp = do
59 n = fromIntegral $ Set.size
60 $ Set.unions $ List.concat
61 $ map (\(k1,k2) -> map Set.singleton [k1, k2])
65 t = round $ 2 * n / sqrt n
68 mapM (\s -> if Set.size s > t then f (removeNodes s mp) else pure [s]) ss
70 ----------------------------------------------------------------------
71 recursiveClustering :: Partitions -> Map (Int, Int) Double -> IO [ClusterNode]
72 recursiveClustering f mp = do
75 n = fromIntegral $ Set.size
76 $ Set.unions $ List.concat
77 $ map (\(k1,k2) -> map Set.singleton [k1, k2])
81 t = round $ 2 * n / sqrt n
83 (toSplit,others) <- List.span (\a -> Set.size a > t) <$> clusterNodes2sets <$> f mp
84 cls' <- mapM f $ map (\s -> removeNodes s mp) toSplit
85 pure $ setNodes2clusterNodes $ others <> (List.concat $ map clusterNodes2sets cls')
88 ----------------------------------------------------------------------
89 setNodes2clusterNodes :: [Set NodeId] -> [ClusterNode]
90 setNodes2clusterNodes ns = List.concat $ map (\(n,ns') -> toCluster n ns') $ zip [1..] ns
92 toCluster :: CommunityId -> Set NodeId -> [ClusterNode]
93 toCluster cId setNodeId = map (\n -> ClusterNode n cId) (Set.toList setNodeId)
95 clusterNodes2map :: [ClusterNode] -> Map NodeId Int
96 clusterNodes2map = Map.fromList . map (\(ClusterNode nId cId) -> (nId, cId))
98 removeNodes :: Set NodeId
99 -> Map (NodeId, NodeId) Double
100 -> Map (NodeId, NodeId) Double
101 removeNodes s = Map.filterWithKey (\(n1,n2) _v -> Set.member n1 s && Set.member n2 s)
104 clusterNodes2sets :: [ClusterNode] -> [Set NodeId]
105 clusterNodes2sets = Dico.elems
106 . Dico.fromListWith (<>)
107 . (map ((Tuple.second Set.singleton) . swap . nodeId2comId))
109 ----------------------------------------------------------------------
110 data Bridgeness = Bridgeness_Basic { bridgeness_partitions :: [ClusterNode]
111 , bridgeness_filter :: Double
113 | Bridgeness_Advanced { bridgeness_similarity :: Similarity
114 , bridgness_confluence :: Confluence
116 | Bridgeness_Recursive { br_partitions :: [[Set NodeId]]
117 , br_filter :: Double
121 type Confluence = Map (NodeId, NodeId) Double
123 -- Filter Links between the Clusters
124 -- Links: Map (NodeId, NodeId) Double
125 -- List of Clusters: [Set NodeId]
126 bridgeness :: Bridgeness
127 -> Map (NodeId, NodeId) Double
128 -> Map (NodeId, NodeId) Double
129 bridgeness (Bridgeness_Recursive sn f) m =
130 Map.unions $ [linksBetween] <> map (\s -> bridgeness (Bridgeness_Basic (setNodes2clusterNodes s) (pi*f)) m') sn
132 (linksBetween, m') = Map.partitionWithKey (\(n1,n2) _v -> Map.lookup n1 mapNodeIdClusterId
133 /= Map.lookup n2 mapNodeIdClusterId
134 ) $ bridgeness (Bridgeness_Basic clusters f) m
135 clusters = setNodes2clusterNodes (map Set.unions sn)
136 mapNodeIdClusterId = clusterNodes2map clusters
139 bridgeness (Bridgeness_Advanced sim c) m = Map.fromList
140 $ List.filter (\x -> if sim == Conditional then snd x > 0.2 else snd x > 0.02)
141 $ map (\(ks, (v1,_v2)) -> (ks,v1))
142 -- $ List.take (if sim == Conditional then 2*n else 3*n)
143 -- $ List.sortOn (Down . (snd . snd))
145 -- $ trace ("bridgeness3 m c" <> show (m,c))
146 $ Map.intersectionWithKey
147 (\k v1 v2 -> trace ("intersectionWithKey " <> (show (k, v1, v2))) (v1, v2)) m c
150 bridgeness (Bridgeness_Basic ns b) m = Map.fromList
153 $ filterComs (round b)
154 $ groupEdges (Map.fromList $ map nodeId2comId ns) m
157 groupEdges :: (Ord comId, Ord nodeId)
159 -> Map (nodeId, nodeId) value
160 -> Map (comId, comId) [((nodeId, nodeId), value)]
161 groupEdges m = fromListWith (<>)
165 n1n2_m = (,) <$> lookup n1 m <*> lookup n2 m
166 n1n2_d = Just [((n1,n2),d)]
167 in (,) <$> n1n2_m <*> n1n2_d
171 filterComs :: (Ord n1, Eq n2)
173 -> Map (n2, n2) [(a3, n1)]
174 -> Map (n2, n2) [(a3, n1)]
175 filterComs b m = Map.filter (\n -> length n > 0) $ mapWithKey filter' m
180 | otherwise = take (b * 2*n) $ List.sortOn (Down . snd) a
183 n = round $ 100 * a' / t
184 a'= fromIntegral $ length a
186 t = fromIntegral $ length $ List.concat $ elems m
188 --------------------------------------------------------------
191 map2intMap :: Map (Int, Int) a -> IntMap (IntMap a)
192 map2intMap m = IntMap.fromListWith (<>)
193 $ map (\((k1,k2), v) -> if k1 < k2
194 then (k1, IntMap.singleton k2 v)
195 else (k2, IntMap.singleton k1 v)
199 look :: (Int,Int) -> IntMap (IntMap a) -> Maybe a
200 look (k1,k2) m = if k1 < k2
201 then case (IntMap.lookup k1 m) of
202 Just m' -> IntMap.lookup k2 m'
208 Compute the median of a list
209 From: https://hackage.haskell.org/package/dsp-0.2.5.1/docs/src/Numeric.Statistics.Median.html
210 Compute the center of the list in a more lazy manner
211 and thus halves memory requirement.
214 median :: (Ord a, Fractional a) => [a] -> a
215 median [] = panic "medianFast: empty list has no median"
217 let recurse (x0:_) (_:[]) = x0
218 recurse (x0:x1:_) (_:_:[]) = (x0+x1)/2
219 recurse (_:xs) (_:_:ys) = recurse xs ys
221 panic "median: this error cannot occur in the way 'recurse' is called"