2 Module : Gargantext.Core.Viz.Phylo.TemporalMatching
3 Description : Module dedicated to the adaptative temporal matching of a Phylo.
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
9 Reference : Chavalarias, D., Lobbé, Q. & Delanoë, A. Draw me Science. Scientometrics 127, 545–575 (2022). https://doi.org/10.1007/s11192-021-04186-5
12 module Gargantext.Core.Viz.Phylo.TemporalMatching where
14 import Control.Lens hiding (Level)
15 import Control.Parallel.Strategies (parList, rdeepseq, using)
17 import Data.List (concat, splitAt, tail, sortOn, sortBy, (++), intersect, null, inits, groupBy, scanl, nub, nubBy, union, dropWhile, partition, or)
18 import Data.Map.Strict (Map, fromList, elems, restrictKeys, unionWith, findWithDefault, keys, (!), empty, mapKeys, adjust)
19 import Debug.Trace (trace)
20 import Gargantext.Core.Viz.Phylo
21 import Gargantext.Core.Viz.Phylo.PhyloTools
22 import Gargantext.Prelude
23 import Prelude (tan,pi)
25 import qualified Data.Map.Strict as Map
26 import qualified Data.List as List
27 import qualified Data.Set as Set
28 import qualified Data.Vector as Vector
30 type Branch = [PhyloGroup]
31 type FinalQuality = Double
32 type LocalQuality = Double
36 ----------------------------
37 -- | Similarity Measure | --
38 ----------------------------
42 -- compute a jaccard similarity between two lists
44 jaccard :: [Int] -> [Int] -> Double
45 jaccard inter' union' = ((fromIntegral . length) $ inter') / ((fromIntegral . length) $ union')
49 -- process the inverse sumLog
51 sumInvLog' :: Double -> Double -> [Double] -> Double
52 sumInvLog' s nb diago = foldl (\mem occ -> mem + (1 / (log (occ + 1/ tan (s * pi / 2)) / log (nb + 1/ tan (s * pi / 2))))) 0 diago
58 sumLog' :: Double -> Double -> [Double] -> Double
59 sumLog' s nb diago = foldl (\mem occ -> mem + (log (occ + 1/ tan (s * pi / 2)) / log (nb + 1/ tan (s * pi / 2)))) 0 diago
63 -- compute the weightedLogJaccard
65 weightedLogJaccard' :: Double -> Double -> Map Int Double -> [Int] -> [Int] -> Double
66 weightedLogJaccard' sens nbDocs diago ngrams ngrams'
67 | null ngramsInter = 0
68 | ngramsInter == ngramsUnion = 1
69 | sens == 0 = jaccard ngramsInter ngramsUnion
70 | sens > 0 = (sumInvLog' sens nbDocs diagoInter) / (sumInvLog' sens nbDocs diagoUnion)
71 | otherwise = (sumLog' sens nbDocs diagoInter) / (sumLog' sens nbDocs diagoUnion)
73 --------------------------------------
75 ngramsInter = intersect ngrams ngrams'
76 --------------------------------------
78 ngramsUnion = union ngrams ngrams'
79 --------------------------------------
80 diagoInter :: [Double]
81 diagoInter = elems $ restrictKeys diago (Set.fromList ngramsInter)
82 --------------------------------------
83 diagoUnion :: [Double]
84 diagoUnion = elems $ restrictKeys diago (Set.fromList ngramsUnion)
85 --------------------------------------
89 -- compute the weightedLogSim
90 -- Adapted from Wang, X., Cheng, Q., Lu, W., 2014. Analyzing evolution of research topics with NEViewer: a new method based on dynamic co-word networks. Scientometrics 101, 1253–1271. https://doi.org/10.1007/s11192-014-1347-y (log added in the formula + pair comparison)
91 -- tests not conclusive
93 weightedLogSim' :: Double -> Double -> Map Int Double -> [Int] -> [Int] -> Double
94 weightedLogSim' sens nbDocs diago ego_ngrams target_ngrams
95 | null ngramsInter = 0
96 | ngramsInter == ngramsUnion = 1
97 | sens == 0 = jaccard ngramsInter ngramsUnion
98 | sens > 0 = (sumInvLog' sens nbDocs diagoInter) / minimum [(sumInvLog' sens nbDocs diagoEgo),(sumInvLog' sens nbDocs diagoTarget)]
99 | otherwise = (sumLog' sens nbDocs diagoInter) / minimum [(sumLog' sens nbDocs diagoEgo),(sumLog' sens nbDocs diagoTarget)]
101 --------------------------------------
103 ngramsInter = intersect ego_ngrams target_ngrams
104 --------------------------------------
106 ngramsUnion = union ego_ngrams target_ngrams
107 --------------------------------------
108 diagoInter :: [Double]
109 diagoInter = elems $ restrictKeys diago (Set.fromList ngramsInter)
110 --------------------------------------
112 diagoEgo = elems $ restrictKeys diago (Set.fromList ego_ngrams)
113 --------------------------------------
114 diagoTarget :: [Double]
115 diagoTarget = elems $ restrictKeys diago (Set.fromList target_ngrams)
116 --------------------------------------
120 -- perform a seamilarity measure between a given group and a pair of targeted groups
122 toProximity :: Double -> Map Int Double -> Proximity -> [Int] -> [Int] -> [Int] -> Double
123 toProximity nbDocs diago proximity egoNgrams targetNgrams targetNgrams' =
125 WeightedLogJaccard sens _ ->
126 let pairNgrams = if targetNgrams == targetNgrams'
128 else union targetNgrams targetNgrams'
129 in weightedLogJaccard' sens nbDocs diago egoNgrams pairNgrams
130 WeightedLogSim sens _ ->
131 let pairNgrams = if targetNgrams == targetNgrams'
133 else union targetNgrams targetNgrams'
134 in weightedLogSim' sens nbDocs diago egoNgrams pairNgrams
135 Hamming _ _ -> undefined
138 -----------------------------
139 -- | Pointers & Matrices | --
140 -----------------------------
143 findLastPeriod :: Filiation -> [Period] -> Period
144 findLastPeriod fil periods = case fil of
145 ToParents -> head' "findLastPeriod" (sortOn fst periods)
146 ToChilds -> last' "findLastPeriod" (sortOn fst periods)
147 ToChildsMemory -> undefined
148 ToParentsMemory -> undefined
150 removeOldPointers :: [Pointer] -> Filiation -> Double -> Proximity -> Period
151 -> [((PhyloGroupId,[Int]),(PhyloGroupId,[Int]))]
152 -> [((PhyloGroupId,[Int]),(PhyloGroupId,[Int]))]
153 removeOldPointers oldPointers fil thr prox prd pairs
154 | null oldPointers = pairs
155 | null (filterPointers prox thr oldPointers) =
156 let lastMatchedPrd = findLastPeriod fil (map (fst . fst . fst) oldPointers)
157 in if lastMatchedPrd == prd
159 else filter (\((id,_),(id',_)) ->
161 ToChildsMemory -> undefined
162 ToParentsMemory -> undefined
163 ToParents -> (((fst . fst . fst) id ) < (fst lastMatchedPrd))
164 || (((fst . fst . fst) id') < (fst lastMatchedPrd))
165 ToChilds -> (((fst . fst . fst) id ) > (fst lastMatchedPrd))
166 || (((fst . fst . fst) id') > (fst lastMatchedPrd))) pairs
169 filterPointers :: Proximity -> Double -> [Pointer] -> [Pointer]
170 filterPointers proxi thr pts = filter (\(_,w) -> filterProximity proxi thr w) pts
172 filterPointers' :: Proximity -> Double -> [(Pointer,[Int])] -> [(Pointer,[Int])]
173 filterPointers' proxi thr pts = filter (\((_,w),_) -> filterProximity proxi thr w) pts
176 reduceDiagos :: Map Date Cooc -> Map Int Double
177 reduceDiagos diagos = mapKeys (\(k,_) -> k)
178 $ foldl (\acc diago -> unionWith (+) acc diago) empty (elems diagos)
180 filterPointersByPeriod :: Filiation -> [(Pointer,[Int])] -> [Pointer]
181 filterPointersByPeriod fil pts =
182 let pts' = sortOn (fst . fst . fst . fst) pts
183 inf = (fst . fst . fst . fst) $ head' "filterPointersByPeriod" pts'
184 sup = (fst . fst . fst . fst) $ last' "filterPointersByPeriod" pts'
186 $ nubBy (\pt pt' -> snd pt == snd pt')
187 $ filter (\pt -> ((fst . fst . fst . fst) pt == inf) || ((fst . fst . fst . fst) pt == sup))
189 ToParents -> reverse pts'
191 ToChildsMemory -> undefined
192 ToParentsMemory -> undefined
194 filterDocs :: Map Date Double -> [Period] -> Map Date Double
195 filterDocs d pds = restrictKeys d $ periodsToYears pds
197 filterDiago :: Map Date Cooc -> [Period] -> Map Date Cooc
198 filterDiago diago pds = restrictKeys diago $ periodsToYears pds
201 ---------------------------------
202 -- | Inter-temporal matching | --
203 ---------------------------------
207 -- perform the related component algorithm, construct the resulting branch id and update the corresponding group's branch id
209 groupsToBranches :: Map PhyloGroupId PhyloGroup -> [Branch]
210 groupsToBranches groups =
211 {- run the related component algorithm -}
212 let egos = groupBy (\gs gs' -> (fst $ fst $ head' "egos" gs) == (fst $ fst $ head' "egos" gs'))
213 $ sortOn (\gs -> fst $ fst $ head' "egos" gs)
214 $ map (\group -> [getGroupId group]
215 ++ (map fst $ group ^. phylo_groupPeriodParents)
216 ++ (map fst $ group ^. phylo_groupPeriodChilds) ) $ elems groups
217 -- first find the related components by inside each ego's period
219 graph' = map relatedComponents egos
220 -- then run it for the all the periods
222 $ relatedComponents $ concat (graph' `using` parList rdeepseq)
223 -- update each group's branch id
224 in map (\(bId,branch) ->
225 let groups' = map (\group -> group & phylo_groupBranchId %~ (\(lvl,lst) -> (lvl,lst ++ [bId])))
226 $ elems $ restrictKeys groups (Set.fromList branch)
227 in groups' `using` parList rdeepseq
228 ) branches `using` parList rdeepseq
232 -- find the best pair/singleton of parents/childs for a given group
234 makePairs :: (PhyloGroupId,[Int]) -> [(PhyloGroupId,[Int])] -> [Period] -> [Pointer] -> Filiation -> Double -> Proximity
235 -> Map Date Double -> Map Date Cooc -> [((PhyloGroupId,[Int]),(PhyloGroupId,[Int]))]
236 makePairs (egoId, egoNgrams) candidates periods oldPointers fil thr prox docs diagos =
239 else removeOldPointers oldPointers fil thr prox lastPrd
240 {- at least on of the pair candidates should be from the last added period -}
241 $ filter (\((id,_),(id',_)) -> ((fst . fst) id == lastPrd) || ((fst . fst) id' == lastPrd))
242 $ filter (\((id,_),(id',_)) -> (elem id inPairs) || (elem id' inPairs))
243 $ listToCombi' candidates
245 --------------------------------------
246 inPairs :: [PhyloGroupId]
248 $ filter (\(id,ngrams) ->
249 let nbDocs = (sum . elems) $ filterDocs docs ([(fst . fst) egoId, (fst . fst) id])
250 diago = reduceDiagos $ filterDiago diagos ([(fst . fst) egoId, (fst . fst) id])
251 in (toProximity nbDocs diago prox egoNgrams egoNgrams ngrams) >= thr
253 --------------------------------------
255 lastPrd = findLastPeriod fil periods
256 --------------------------------------
259 -- find the best temporal links between a given group and its parents/childs
261 phyloGroupMatching :: [[(PhyloGroupId,[Int])]] -> Filiation -> Proximity -> Map Date Double -> Map Date Cooc
262 -> Double -> [Pointer] -> (PhyloGroupId,[Int]) -> [Pointer]
263 phyloGroupMatching candidates filiation proxi docs diagos thr oldPointers (id,ngrams) =
264 if (null $ filterPointers proxi thr oldPointers)
265 -- if no previous pointers satisfy the current threshold then let's find new pointers
266 then if null nextPointers
268 else filterPointersByPeriod filiation
269 -- 2) keep only the best set of pointers grouped by proximity
270 $ head' "phyloGroupMatching"
271 $ groupBy (\pt pt' -> (snd . fst) pt == (snd . fst) pt')
272 -- 1) find the first time frame where at leats one pointer satisfies the proximity threshold
273 $ sortBy (comparing (Down . snd . fst)) $ head' "pointers" nextPointers
276 nextPointers :: [[(Pointer,[Int])]]
277 nextPointers = take 1
278 -- stop as soon as we find a time frame where at least one singleton / pair satisfies the threshold
280 -- for each time frame, process the proximity on relevant pairs of targeted groups
281 $ scanl (\acc targets ->
282 let periods = nub $ map (fst . fst . fst) targets
283 lastPrd = findLastPeriod filiation periods
284 nbdocs = sum $ elems $ (filterDocs docs ([(fst . fst) id] ++ periods))
286 $ filterDiago diagos ([(fst . fst) id] ++ periods)
287 singletons = processProximity nbdocs diago $ map (\g -> (g,g)) $ filter (\g -> (fst . fst . fst) g == lastPrd) targets
288 pairs = makePairs (id,ngrams) targets periods oldPointers filiation thr proxi docs diagos
291 then acc ++ ( processProximity nbdocs diago pairs )
292 else acc ++ singletons
293 ) [] $ map concat $ inits candidates -- groups from [[1900],[1900,1901],[1900,1901,1902],...]
294 -----------------------------
295 processProximity :: Double -> Map Int Double -> [((PhyloGroupId,[Int]),(PhyloGroupId,[Int]))] -> [(Pointer,[Int])]
296 processProximity nbdocs diago targets = filterPointers' proxi thr
299 let proximity = toProximity nbdocs diago proxi ngrams (snd c) (snd c')
300 in if ((c == c') || (snd c == snd c'))
301 then [((fst c,proximity),snd c)]
302 else [((fst c,proximity),snd c),((fst c',proximity),snd c')] ) targets
306 -- get the upstream/downstream timescale of a given period
308 getNextPeriods :: Filiation -> Int -> Period -> [Period] -> [Period]
309 getNextPeriods fil max' pId pIds =
311 ToChilds -> take max' $ (tail . snd) $ splitAt (elemIndex' pId pIds) pIds
312 ToParents -> take max' $ (reverse . fst) $ splitAt (elemIndex' pId pIds) pIds
313 ToChildsMemory -> undefined
314 ToParentsMemory -> undefined
318 -- find all the candidates parents/childs of ego
320 getCandidates :: Int -> PhyloGroup -> [[(PhyloGroupId,[Int])]] -> [[(PhyloGroupId,[Int])]]
321 getCandidates minNgrams ego targets =
322 if (length (ego ^. phylo_groupNgrams)) > 1
324 map (\groups' -> filter (\g' -> (> minNgrams) $ length $ intersect (ego ^. phylo_groupNgrams) (snd g')) groups') targets
326 map (\groups' -> filter (\g' -> (not . null) $ intersect (ego ^. phylo_groupNgrams) (snd g')) groups') targets
330 -- set up and start performing the upstream/downstream inter‐temporal matching period by period
332 reconstructTemporalLinks :: Int -> [Period] -> Proximity -> Double -> Map Date Double -> Map Date Cooc -> [PhyloGroup] -> [PhyloGroup]
333 reconstructTemporalLinks frame periods proximity thr docs coocs groups =
334 let groups' = groupByField _phylo_groupPeriod groups
335 in foldl' (\acc prd ->
336 let -- 1) find the parents/childs matching periods
337 periodsPar = getNextPeriods ToParents frame prd periods
338 periodsChi = getNextPeriods ToChilds frame prd periods
339 -- 2) find the parents/childs matching candidates
340 candidatesPar = map (\prd' -> map (\g -> (getGroupId g, g ^. phylo_groupNgrams)) $ findWithDefault [] prd' groups') periodsPar
341 candidatesChi = map (\prd' -> map (\g -> (getGroupId g, g ^. phylo_groupNgrams)) $ findWithDefault [] prd' groups') periodsChi
342 -- 3) find the parents/childs number of docs by years
343 docsPar = filterDocs docs ([prd] ++ periodsPar)
344 docsChi = filterDocs docs ([prd] ++ periodsChi)
345 -- 4) find the parents/child diago by years
346 diagoPar = filterDiago (map coocToDiago coocs) ([prd] ++ periodsPar)
347 diagoChi = filterDiago (map coocToDiago coocs) ([prd] ++ periodsPar)
348 -- 5) match in parallel all the groups (egos) to their possible candidates
350 let pointersPar = phyloGroupMatching (getCandidates (getMinSharedNgrams proximity) ego candidatesPar) ToParents proximity docsPar diagoPar
351 thr (getPeriodPointers ToParents ego) (getGroupId ego, ego ^. phylo_groupNgrams)
352 pointersChi = phyloGroupMatching (getCandidates (getMinSharedNgrams proximity) ego candidatesChi) ToChilds proximity docsChi diagoChi
353 thr (getPeriodPointers ToChilds ego) (getGroupId ego, ego ^. phylo_groupNgrams)
354 in addPointers ToChilds TemporalPointer pointersChi
355 $ addPointers ToParents TemporalPointer pointersPar
356 $ addMemoryPointers ToChildsMemory TemporalPointer thr pointersChi
357 $ addMemoryPointers ToParentsMemory TemporalPointer thr pointersPar ego)
358 $ findWithDefault [] prd groups'
359 egos' = egos `using` parList rdeepseq
365 -- reconstruct a phylomemetic network from a list of groups and from a given threshold
367 toPhylomemeticNetwork :: Int -> [Period] -> Proximity -> Double -> Map Date Double -> Map Date Cooc -> [PhyloGroup] -> [Branch]
368 toPhylomemeticNetwork timescale periods similarity thr docs coocs groups =
369 groupsToBranches $ fromList $ map (\g -> (getGroupId g, g))
370 $ reconstructTemporalLinks timescale periods similarity thr docs coocs groups
373 ----------------------------
374 -- | Quality Assessment | --
375 ----------------------------
379 -- filter the branches containing x
381 relevantBranches :: Int -> [Branch] -> [Branch]
382 relevantBranches x branches =
383 filter (\groups -> (any (\group -> elem x $ group ^. phylo_groupNgrams) groups)) branches
387 -- compute the accuracy ξ
388 -- the accuracy of a branch relatively to a root x is computed only over the periods where clusters mentionning x in the phylo do exist
390 accuracy :: Int -> [(Date,Date)] -> Branch -> Double
391 accuracy x periods bk = ((fromIntegral $ length $ filter (\g -> elem x $ g ^. phylo_groupNgrams) bk') / (fromIntegral $ length bk'))
395 bk' = filter (\g -> elem (g ^. phylo_groupPeriod) periods) bk
399 -- compute the recall ρ
401 recall :: Int -> Branch -> [Branch] -> Double
402 recall x bk bx = ((fromIntegral $ length $ filter (\g -> elem x $ g ^. phylo_groupNgrams) bk)
403 / (fromIntegral $ length $ filter (\g -> elem x $ g ^. phylo_groupNgrams) $ concat bx))
407 -- compute the F-score function
409 fScore :: Double -> Int -> [(Date,Date)] -> [PhyloGroup] -> [[PhyloGroup]] -> Double
410 fScore lambda x periods bk bx =
411 let rec = recall x bk bx
412 acc = accuracy x periods bk
413 in ((1 + lambda ** 2) * acc * rec)
414 / (((lambda ** 2) * acc + rec))
418 -- compute the number of groups
420 wk :: [PhyloGroup] -> Double
421 wk bk = fromIntegral $ length bk
425 -- compute the recall ρ for all the branches
427 globalRecall :: Map Int Double -> [Branch] -> Double
428 globalRecall freq branches =
434 bx = relevantBranches x branches
435 wks = sum $ map wk bx
436 in (px / pys) * (sum $ map (\bk -> ((wk bk) / wks) * (recall x bk bx)) bx))
440 pys = sum (elems freq)
444 -- compute the accuracy ξ for all the branches
446 globalAccuracy :: Map Int Double -> [Branch] -> Double
447 globalAccuracy freq branches =
453 bx = relevantBranches x branches
454 -- | periods containing x
455 periods = nub $ map _phylo_groupPeriod $ filter (\g -> elem x $ g ^. phylo_groupNgrams) $ concat bx
456 wks = sum $ map wk bx
457 in (px / pys) * (sum $ map (\bk -> ((wk bk) / wks) * (accuracy x periods bk)) bx))
461 pys = sum (elems freq)
465 -- compute the quality score F(λ)
467 toPhyloQuality :: Double -> Double -> Map Int Double -> [[PhyloGroup]] -> Double
468 toPhyloQuality fdt lambda freq branches =
474 let bx = relevantBranches x branches
475 -- | periods containing x
476 periods = nub $ map _phylo_groupPeriod $ filter (\g -> elem x $ g ^. phylo_groupNgrams) $ concat bx
477 wks = sum $ map wk bx
478 -- in (px / pys) * (sum $ map (\bk -> ((wk bk) / wks) * (fScore beta x bk bx)) bx))
479 -- in (1 / fdt) * (sum $ map (\bk -> ((wk bk) / wks) * (fScore beta x periods bk bx)) bx))
480 in (1 / fdt) * (sum $ map (\bk -> ((wk bk) / wks) * (fScore (tan (lambda * pi / 2)) x periods bk bx)) bx))
484 -- pys = sum (elems freq)
487 -------------------------
488 -- | Sea-level Rise | --
489 -------------------------
493 -- attach a rise value to branches & groups metadata
495 riseToMeta :: Double -> [Branch] -> [Branch]
496 riseToMeta rise branches =
497 let break = length branches > 1
500 if break then g & phylo_groupMeta .~ (adjust (\lst -> lst ++ [rise]) "breaks"(g ^. phylo_groupMeta))
505 -- attach a thr value to branches & groups metadata
507 thrToMeta :: Double -> [Branch] -> [Branch]
508 thrToMeta thr branches =
510 map (\g -> g & phylo_groupMeta .~ (adjust (\lst -> lst ++ [thr]) "seaLevels" (g ^. phylo_groupMeta))) b) branches
515 -- 1) try the zipper structure https://wiki.haskell.org/Zipper to performe the sea-level rise algorithme
516 -- 2) investigate how the branches order influences the 'separateBranches' function
521 -- sequentially separate each branch for a given threshold and check if it locally increases the quality score
522 -- sequence = [done] | currentBranch | [rest]
523 -- done = all the already separated branches
524 -- rest = all the branches we still have to separate
526 separateBranches :: Double -> Proximity -> Double -> Map Int Double -> Int -> Double -> Double
527 -> Int -> Map Date Double -> Map Date Cooc -> [Period]
528 -> [(Branch,ShouldTry)] -> (Branch,ShouldTry) -> [(Branch,ShouldTry)]
529 -> [(Branch,ShouldTry)]
530 separateBranches fdt similarity lambda frequency minBranch thr rise timescale docs coocs periods done currentBranch rest =
531 let done' = done ++ (if snd currentBranch
533 (if ((null (fst branches')) || (quality > quality'))
534 ---- 5) if the quality is not increased by the new branches or if the new branches are all small
535 ---- then undo the separation and localy stop the sea rise
536 ---- else validate the separation and authorise next sea rise in the long new branches
538 -- trace (" ✗ F(λ) = " <> show(quality) <> " (vs) " <> show(quality')
539 -- <> " | " <> show(length $ fst ego) <> " groups : "
540 -- <> " |✓ " <> show(length $ fst ego') <> show(map length $ fst ego')
541 -- <> " |✗ " <> show(length $ snd ego') <> "[" <> show(length $ concat $ snd ego') <> "]")
542 [(fst currentBranch,False)]
544 -- trace (" ✓ F(λ) = " <> show(quality) <> " (vs) " <> show(quality')
545 -- <> " | " <> show(length $ fst ego) <> " groups : "
546 -- <> " |✓ " <> show(length $ fst ego') <> show(map length $ fst ego')
547 -- <> " |✗ " <> show(length $ snd ego') <> "[" <> show(length $ concat $ snd ego') <> "]")
548 ((map (\e -> (e,True)) (fst branches')) ++ (map (\e -> (e,False)) (snd branches'))))
549 else [currentBranch])
551 -- 6) if there is no more branch to separate tne return [done'] else continue with [rest]
554 else separateBranches fdt similarity lambda frequency minBranch thr rise timescale docs coocs periods
555 done' (List.head rest) (List.tail rest)
557 ------- 1) compute the quality before splitting any branch
558 quality :: LocalQuality
559 quality = toPhyloQuality fdt lambda frequency ((map fst done) ++ [fst currentBranch] ++ (map fst rest))
561 ------------------- 2) split the current branch and create a new phylomemetic network
562 phylomemeticNetwork :: [Branch]
563 phylomemeticNetwork = toPhylomemeticNetwork timescale periods similarity thr docs coocs (fst currentBranch)
565 --------- 3) change the new phylomemetic network into a tuple of new branches
566 --------- on the left : the long branches, on the right : the small ones
567 branches' :: ([Branch],[Branch])
568 branches' = partition (\b -> (length $ nub $ map _phylo_groupPeriod b) >= minBranch)
570 $ riseToMeta rise phylomemeticNetwork
572 -------- 4) compute again the quality by considering the new branches
573 quality' :: LocalQuality
574 quality' = toPhyloQuality fdt lambda frequency
575 ((map fst done) ++ (fst branches') ++ (snd branches') ++ (map fst rest))
579 -- perform the sea-level rise algorithm, browse the similarity ladder and check that we can try out the next step
581 seaLevelRise :: Double -> Proximity -> Double -> Int -> Map Int Double
582 -> [Double] -> Double
584 -> Map Date Double -> Map Date Cooc
585 -> [(Branch,ShouldTry)]
586 -> ([(Branch,ShouldTry)],FinalQuality)
587 seaLevelRise fdt proximity lambda minBranch frequency ladder rise frame periods docs coocs branches =
588 -- if the ladder is empty or thr > 1 or there is no branch to break then stop
589 if (null ladder) || ((List.head ladder) > 1) || (stopRise branches)
590 then (branches, toPhyloQuality fdt lambda frequency (map fst branches))
592 -- start breaking up all the possible branches for the current similarity threshold
593 let thr = List.head ladder
594 branches' = trace ("threshold = " <> printf "%.3f" thr
595 <> " F(λ) = " <> printf "%.5f" (toPhyloQuality fdt lambda frequency (map fst branches))
596 <> " ξ = " <> printf "%.5f" (globalAccuracy frequency (map fst branches))
597 <> " ρ = " <> printf "%.5f" (globalRecall frequency (map fst branches))
598 <> " branches = " <> show(length branches))
599 $ separateBranches fdt proximity lambda frequency minBranch thr rise frame docs coocs periods
600 [] (List.head branches) (List.tail branches)
601 in seaLevelRise fdt proximity lambda minBranch frequency (List.tail ladder) (rise + 1) frame periods docs coocs branches'
604 stopRise :: [(Branch,ShouldTry)] -> Bool
605 stopRise bs = ((not . or) $ map snd bs)
609 -- start the temporal matching process up, recover the resulting branches and update the groups (at scale 1) consequently
611 temporalMatching :: [Double] -> Phylo -> Phylo
612 temporalMatching ladder phylo = updatePhyloGroups 1
613 (Map.fromList $ map (\g -> (getGroupId g,g)) $ traceMatchEnd $ concat branches)
614 (updateQuality quality phylo)
617 quality :: FinalQuality
622 branches = map fst $ fst sea
624 --- 2) process the temporal matching by elevating the similarity ladder
625 sea :: ([(Branch,ShouldTry)],FinalQuality)
626 sea = seaLevelRise (fromIntegral $ Vector.length $ getRoots phylo)
627 (phyloProximity $ getConfig phylo)
628 (_qua_granularity $ phyloQuality $ getConfig phylo)
629 (_qua_minBranch $ phyloQuality $ getConfig phylo)
630 (phylo ^. phylo_termFreq)
632 (getTimeFrame $ timeUnit $ getConfig phylo)
634 (phylo ^. phylo_timeDocs)
635 (phylo ^. phylo_timeCooc)
636 (reverse $ sortOn (length . fst) seabed)
638 ------ 1) for each group, process an initial temporal Matching and create a 'seabed'
639 ------ ShouldTry determines if you should apply the seaLevelRise function again within each branch
640 seabed :: [(Branch,ShouldTry)]
641 seabed = map (\b -> (b,(length $ nub $ map _phylo_groupPeriod b) >= (_qua_minBranch $ phyloQuality $ getConfig phylo)))
642 $ toPhylomemeticNetwork (getTimeFrame $ timeUnit $ getConfig phylo)
644 (phyloProximity $ getConfig phylo)
646 (phylo ^. phylo_timeDocs)
647 (phylo ^. phylo_timeCooc)
648 (traceTemporalMatching $ getGroupsFromScale 1 phylo)