]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Text/Terms.hs
[API] enabling add with form and add list again.
[gargantext.git] / src / Gargantext / Text / Terms.hs
1 {-|
2 Module : Gargantext.Text.Ngrams
3 Description : Ngrams definition and tools
4 Copyright : (c) CNRS, 2017 - present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 An @n-gram@ is a contiguous sequence of n items from a given sample of
11 text. In Gargantext application the items are words, n is a non negative
12 integer.
13
14 Using Latin numerical prefixes, an n-gram of size 1 is referred to as a
15 "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size
16 3 is a "trigram". English cardinal numbers are sometimes used, e.g.,
17 "four-gram", "five-gram", and so on.
18
19 Source: https://en.wikipedia.org/wiki/Ngrams
20
21 TODO
22 group Ngrams -> Tree
23 compute occ by node of Tree
24 group occs according groups
25
26 compute cooccurrences
27 compute graph
28
29 -}
30
31 {-# LANGUAGE NoImplicitPrelude #-}
32 {-# LANGUAGE OverloadedStrings #-}
33 {-# LANGUAGE DeriveGeneric #-}
34 {-# LANGUAGE TemplateHaskell #-}
35
36 module Gargantext.Text.Terms
37 where
38
39 import Control.Lens
40 import Data.Text (Text)
41 import Data.Traversable
42 import GHC.Base (String)
43 import GHC.Generics (Generic)
44 import Gargantext.Core
45 import Gargantext.Core.Types
46 import Gargantext.Prelude
47 import Gargantext.Text (sentences)
48 import Gargantext.Text.Terms.Eleve (mainEleveWith, Tries, Token, buildTries, toToken)
49 import Gargantext.Text.Terms.Mono (monoTerms)
50 import Gargantext.Text.Terms.Mono.Stem (stem)
51 import Gargantext.Text.Terms.Mono.Token.En (tokenize)
52 import Gargantext.Text.Terms.Multi (multiterms)
53 import qualified Data.List as List
54 import qualified Data.Set as Set
55 import qualified Data.Text as Text
56
57 data TermType lang
58 = Mono { _tt_lang :: lang }
59 | Multi { _tt_lang :: lang }
60 | MonoMulti { _tt_lang :: lang }
61 | Unsupervised { _tt_lang :: lang
62 , _tt_windowSize :: Int
63 , _tt_ngramsSize :: Int
64 , _tt_model :: Maybe (Tries Token ())
65 }
66 deriving Generic
67
68 makeLenses ''TermType
69 --group :: [Text] -> [Text]
70 --group = undefined
71
72 -- remove Stop Words
73 -- map (filter (\t -> not . elem t)) $
74 ------------------------------------------------------------------------
75 -- | Sugar to extract terms from text (hiddeng mapM from end user).
76 --extractTerms :: Traversable t => TermType Lang -> t Text -> IO (t [Terms])
77 extractTerms :: TermType Lang -> [Text] -> IO [[Terms]]
78
79 extractTerms (Unsupervised l n s m) xs = mapM (terms (Unsupervised l n s (Just m'))) xs
80 where
81 m' = case m of
82 Just m''-> m''
83 Nothing -> newTries n (Text.intercalate " " xs)
84
85 extractTerms termTypeLang xs = mapM (terms termTypeLang) xs
86
87 ------------------------------------------------------------------------
88 -- | Terms from Text
89 -- Mono : mono terms
90 -- Multi : multi terms
91 -- MonoMulti : mono and multi
92 -- TODO : multi terms should exclude mono (intersection is not empty yet)
93 terms :: TermType Lang -> Text -> IO [Terms]
94 terms (Mono lang) txt = pure $ monoTerms lang txt
95 terms (Multi lang) txt = multiterms lang txt
96 terms (MonoMulti lang) txt = terms (Multi lang) txt
97 terms (Unsupervised lang n s m) txt = termsUnsupervised (Unsupervised lang n s (Just m')) txt
98 where
99 m' = maybe (newTries n txt) identity m
100 -- terms (WithList list) txt = pure . concat $ extractTermsWithList list txt
101 ------------------------------------------------------------------------
102
103 text2term :: Lang -> [Text] -> Terms
104 text2term _ [] = Terms [] Set.empty
105 text2term lang txt = Terms txt (Set.fromList $ map (stem lang) txt)
106
107 isPunctuation :: Text -> Bool
108 isPunctuation x = List.elem x $ (Text.pack . pure)
109 <$> ("!?(),;." :: String)
110
111 -- | Unsupervised ngrams extraction
112 -- language agnostic extraction
113 -- TODO: remove IO
114 -- TODO: newtype BlockText
115
116 type WindowSize = Int
117 type MinNgramSize = Int
118
119 termsUnsupervised :: TermType Lang -> Text -> IO [Terms]
120 termsUnsupervised (Unsupervised l n s m) =
121 pure
122 . map (text2term l)
123 . List.nub
124 . (List.filter (\l' -> List.length l' >= s))
125 . List.concat
126 . mainEleveWith (maybe (panic "no model") identity m) n
127 . uniText
128 termsUnsupervised _ = undefined
129
130 newTries :: Int -> Text -> Tries Token ()
131 newTries n t = buildTries n (fmap toToken $ uniText t)
132
133 -- | TODO removing long terms > 24
134 uniText :: Text -> [[Text]]
135 uniText = map (List.filter (not . isPunctuation))
136 . map tokenize
137 . sentences -- | TODO get sentences according to lang
138 . Text.toLower
139