2 Module : Gargantext.Core.Text.Ngrams
3 Description : Ngrams definition and tools
4 Copyright : (c) CNRS, 2017 - present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 An @n-gram@ is a contiguous sequence of n items from a given sample of
11 text. In Gargantext application the items are words, n is a non negative
14 Using Latin numerical prefixes, an n-gram of size 1 is referred to as a
15 "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size
16 3 is a "trigram". English cardinal numbers are sometimes used, e.g.,
17 "four-gram", "five-gram", and so on.
19 Source: https://en.wikipedia.org/wiki/Ngrams
23 compute occ by node of Tree
24 group occs according groups
31 {-# LANGUAGE TemplateHaskell #-}
32 {-# LANGUAGE ConstrainedClassMethods #-}
34 module Gargantext.Core.Text.Terms
39 import qualified Data.Map as Map
40 import Data.Text (Text)
41 import Data.Traversable
42 import qualified Data.List as List
43 import qualified Data.Set as Set
44 import qualified Data.Text as Text
45 import GHC.Base (String)
46 import GHC.Generics (Generic)
48 import Gargantext.Core
49 import Gargantext.Core.Flow.Types
50 import Gargantext.Core.Text (sentences, HasText(..))
51 import Gargantext.Core.Text.Terms.Eleve (mainEleveWith, Tries, Token, buildTries, toToken)
52 import Gargantext.Core.Text.Terms.Mono (monoTerms)
53 import Gargantext.Core.Text.Terms.Mono.Stem (stem)
54 import Gargantext.Core.Text.Terms.Mono.Token.En (tokenize)
55 import Gargantext.Core.Text.Terms.Multi (multiterms)
56 import Gargantext.Core.Types
57 import Gargantext.Database.Prelude (Cmd)
58 import Gargantext.Database.Schema.Ngrams (Ngrams(..), NgramsType(..), ngramsTerms, text2ngrams)
59 import Gargantext.Prelude
63 = Mono { _tt_lang :: !lang }
64 | Multi { _tt_lang :: !lang }
65 | MonoMulti { _tt_lang :: !lang }
66 | Unsupervised { _tt_lang :: !lang
67 , _tt_windowSize :: !Int
68 , _tt_ngramsSize :: !Int
69 , _tt_model :: !(Maybe (Tries Token ()))
74 --group :: [Text] -> [Text]
78 -- map (filter (\t -> not . elem t)) $
79 ------------------------------------------------------------------------
80 -- | Sugar to extract terms from text (hiddeng mapM from end user).
81 --extractTerms :: Traversable t => TermType Lang -> t Text -> IO (t [Terms])
82 extractTerms :: TermType Lang -> [Text] -> IO [[Terms]]
84 extractTerms (Unsupervised l n s m) xs = mapM (terms (Unsupervised l n s (Just m'))) xs
88 Nothing -> newTries n (Text.intercalate " " xs)
90 extractTerms termTypeLang xs = mapM (terms termTypeLang) xs
93 ------------------------------------------------------------------------
98 withLang (Unsupervised l n s m) ns = Unsupervised l n s m'
101 Nothing -> -- trace ("buildTries here" :: String)
102 Just $ buildTries n ( fmap toToken
104 $ Text.intercalate " . "
111 ------------------------------------------------------------------------
112 class ExtractNgramsT h
114 extractNgramsT :: HasText h
117 -> Cmd err (Map Ngrams (Map NgramsType Int))
121 filterNgramsT :: Int -> Map Ngrams (Map NgramsType Int)
122 -> Map Ngrams (Map NgramsType Int)
123 filterNgramsT s ms = Map.fromList $ map filter' $ Map.toList ms
126 | Text.length (ng ^. ngramsTerms) < s = (ng,y)
127 | otherwise = (text2ngrams (Text.take s (ng ^. ngramsTerms)), y)
130 -- =======================================================
134 -- Multi : multi terms
135 -- MonoMulti : mono and multi
136 -- TODO : multi terms should exclude mono (intersection is not empty yet)
137 terms :: TermType Lang -> Text -> IO [Terms]
138 terms (Mono lang) txt = pure $ monoTerms lang txt
139 terms (Multi lang) txt = multiterms lang txt
140 terms (MonoMulti lang) txt = terms (Multi lang) txt
141 terms (Unsupervised lang n s m) txt = termsUnsupervised (Unsupervised lang n s (Just m')) txt
143 m' = maybe (newTries n txt) identity m
144 -- terms (WithList list) txt = pure . concat $ extractTermsWithList list txt
147 ------------------------------------------------------------------------
149 text2term :: Lang -> [Text] -> Terms
150 text2term _ [] = Terms [] Set.empty
151 text2term lang txt = Terms txt (Set.fromList $ map (stem lang) txt)
153 isPunctuation :: Text -> Bool
154 isPunctuation x = List.elem x $ (Text.pack . pure)
155 <$> ("!?(),;." :: String)
157 -- | Unsupervised ngrams extraction
158 -- language agnostic extraction
160 -- TODO: newtype BlockText
162 type WindowSize = Int
163 type MinNgramSize = Int
165 termsUnsupervised :: TermType Lang -> Text -> IO [Terms]
166 termsUnsupervised (Unsupervised l n s m) =
170 . (List.filter (\l' -> List.length l' >= s))
172 . mainEleveWith (maybe (panic "no model") identity m) n
174 termsUnsupervised _ = undefined
176 newTries :: Int -> Text -> Tries Token ()
177 newTries n t = buildTries n (fmap toToken $ uniText t)
179 -- | TODO removing long terms > 24
180 uniText :: Text -> [[Text]]
181 uniText = map (List.filter (not . isPunctuation))
183 . sentences -- TODO get sentences according to lang