]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Core/Text/Terms/Eleve.hs
[patch] fixes for missing transformWith clause in patch apply
[gargantext.git] / src / Gargantext / Core / Text / Terms / Eleve.hs
1 {-|
2 Module : Gargantext.Core.Text.Terms.Eleve
3 Description : Unsupervized Word segmentation
4 Copyright : (c) CNRS, 2019-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 # Implementation of Unsupervized Word Segmentation
11
12 References:
13
14 - Python implementation (Korantin August, Emmanuel Navarro):
15 [EleVe](https://github.com/kodexlab/eleve.git)
16
17 - Unsupervized Word Segmentation:the case for Mandarin Chinese Pierre
18 Magistry, Benoît Sagot, Alpage, INRIA & Univ. Paris 7, Proceedings of
19 the 50th Annual Meeting of the Association for Computational Linguistics
20 , pages 383–387. [PDF](https://www.aclweb.org/anthology/P12-2075)
21
22 Notes for current implementation:
23 - TODO extract longer ngrams (see paper above, viterbi algo can be used)
24 - TODO AD TEST: prop (Node c _e f) = c == Map.size f
25
26 - AD: Real ngrams extraction test
27 from Gargantext.Core.Text.Terms import extractTermsUnsupervised
28 docs <- runCmdRepl $ selectDocs 1004
29 extractTermsUnsupervised 3 $ DT.intercalate " "
30 $ catMaybes
31 $ Gargantext.map _hyperdataDocument_abstract docs
32
33 -}
34 {-# LANGUAGE ConstraintKinds #-}
35 {-# LANGUAGE StandaloneDeriving #-}
36 {-# LANGUAGE TemplateHaskell #-}
37 {-# LANGUAGE TypeFamilies #-}
38
39 module Gargantext.Core.Text.Terms.Eleve where
40
41 -- import Debug.Trace (trace)
42 -- import Debug.SimpleReflect
43
44 import Control.Lens hiding (levels, children)
45 import Control.Monad (forM_)
46 import qualified Data.List as L
47 import Data.Monoid
48 import Data.Text (Text)
49 import qualified Data.Text as T
50 import Data.Map (Map)
51 import Data.Maybe (fromMaybe)
52 import qualified Data.Map as Map
53 import Gargantext.Prelude hiding (cs)
54 import qualified Data.Tree as Tree
55 import Data.Tree (Tree)
56 import qualified Prelude as P (putStrLn, logBase, isNaN, RealFloat)
57
58 nan :: Floating e => e
59 nan = 0 / 0
60
61 noNaNs :: P.RealFloat e => [e] -> [e]
62 noNaNs = filter (not . P.isNaN)
63
64 updateIfDefined :: P.RealFloat e => e -> e -> e
65 updateIfDefined e0 e | P.isNaN e = e0
66 | otherwise = e
67
68 sim :: Entropy e => e -> e -> Bool
69 sim x y = x == y || (P.isNaN x && P.isNaN y)
70
71 subst :: Entropy e => (e, e) -> e -> e
72 subst (src, dst) x | sim src x = dst
73 | otherwise = x
74 ------------------------------------------------------------------------
75
76 -- | TODO: Show Instance only used for debugging
77 type Entropy e =
78 ( Fractional e
79 , Floating e
80 , P.RealFloat e
81 , Show e
82 )
83 ------------------------------------------------------------------------
84 -- | Example and tests for development
85 data I e = I
86 { _info_entropy :: e
87 , _info_entropy_var :: e
88 , _info_autonomy :: e
89 }
90
91 instance Show e => Show (I e) where
92 show (I e ev a) = show (e, ev, a)
93
94 makeLenses ''I
95
96 type ModEntropy i o e = (e -> e) -> i -> o
97
98 set_autonomy :: Entropy e => ModEntropy (I e) (I e) e
99 set_autonomy fe i = i & info_autonomy .~ fe (i ^. info_entropy_var)
100
101 set_entropy_var :: Entropy e => Setter e (I e) e e
102 set_entropy_var f e = (\ev -> I e ev nan) <$> f e
103
104 data StartStop = Start | Stop
105 deriving (Ord, Eq, Show)
106
107 data Token = NonTerminal Text
108 | Terminal StartStop
109 deriving (Ord, Eq, Show)
110
111 isTerminal :: Token -> Bool
112 isTerminal (Terminal _) = True
113 isTerminal (NonTerminal _) = False
114
115 nonTerminals :: [Token] -> [Text]
116 nonTerminals ts = [nt | NonTerminal nt <- ts]
117
118 parseToken :: Text -> Token
119 parseToken "<start>" = Terminal Start
120 parseToken "<stop>" = Terminal Stop
121 parseToken t = NonTerminal t
122
123 toToken :: [Text] -> [Token]
124 toToken xs = Terminal Start : (NonTerminal <$> xs) <> [Terminal Stop]
125
126 printToken :: Token -> Text
127 printToken = f
128 where
129 f (NonTerminal x) = x
130 f (Terminal Start) = "<start>"
131 f (Terminal Stop) = "<stop>"
132 ------------------------------------------------------------------------
133
134 data Trie k e
135 = Node { _node_count :: Int
136 , _node_entropy :: e
137 , _node_children :: Map k (Trie k e)
138 }
139 | Leaf { _node_count :: Int }
140 deriving (Show)
141
142 makeLenses ''Trie
143
144 insertTrie :: Ord k => [k] -> Trie k () -> Trie k ()
145 insertTrie [] n = n { _node_count = _node_count n +1}
146 insertTrie (x:xs) (Leaf c) = mkTrie (c+1) $ Map.singleton x $ insertTrie xs emptyTrie
147 insertTrie (x:xs) (Node c _e children) = mkTrie (c+1) $ Map.alter f x children
148 where
149 f = Just . insertTrie xs . fromMaybe emptyTrie
150
151 -- emptyTrie :: (Ord k, Monoid e) => Trie k e
152 -- emptyTrie = Node 0 mempty mempty
153 emptyTrie :: Trie k e
154 emptyTrie = Leaf 0
155
156 mkTrie :: Monoid e => Int -> Map k (Trie k e) -> Trie k e
157 mkTrie c children
158 | Map.null children = Leaf c
159 | otherwise = Node c mempty children
160
161 -----------------------------
162 -- | Trie to Tree since Tree as nice print function
163 toTree :: k -> Trie k e -> Tree (k,Int,Maybe e)
164 toTree k (Leaf c) = Tree.Node (k, c, Nothing) []
165 toTree k (Node c e cs) = Tree.Node (k, c, Just e) (map (uncurry toTree) $ Map.toList cs)
166
167 ------------------------------------------------------------------------
168 ------------------------------------------------------------------------
169 normalizeLevel :: Entropy e => e -> e -> e -> e
170 normalizeLevel m v e = (e - m) / v
171
172 {- Unused
173
174 nodeChildren :: Trie k e -> Map k (Trie k e)
175 nodeChildren (Node _ _ cs) = cs
176 nodeChildren (Leaf _) = Map.empty
177
178 -}
179
180 chunkAlongEleve :: Int -> [a] -> [[a]]
181 chunkAlongEleve n xs = L.take n <$> L.tails xs
182
183 data Direction = Backward | Forward
184
185 buildTrie :: Direction -> Int -> [[Token]] -> Trie Token ()
186 buildTrie d n sentences
187 = L.foldr insertTrie emptyTrie
188 . L.concat
189 $ ( filter (/= [Terminal (term d)])
190 . chunkAlongEleve (n + 1)
191 . order d
192 )
193 <$> sentences
194 where
195 order Forward = identity
196 order Backward = reverse
197 term Forward = Stop
198 term Backward = Start
199
200 class IsTrie trie where
201 entropyTrie :: Entropy e => (k -> Bool) -> trie k () -> trie k e
202 nodeEntropy :: Entropy e => Getting e i e -> trie k i -> e
203 nodeChild :: Ord k => k -> trie k e -> trie k e
204 findTrie :: Ord k => [k] -> trie k e -> trie k e
205 printTrie :: (Show i, Entropy e) => Getting e i e -> trie Token i -> IO ()
206 evTrie :: Entropy e => Getting e i e -> Setter i o e e -> trie k i -> trie k o
207 normalizeEntropy :: Entropy e
208 => Getting e i e -> ModEntropy i o e
209 -> trie k i -> trie k o
210
211 instance IsTrie Trie where
212
213 entropyTrie _ (Leaf c) = Leaf c
214 entropyTrie pred (Node c () children) = Node c e (map (entropyTrie pred) children)
215 where
216 children' = Map.toList children
217 sum_count = sum $ _node_count . snd <$> children'
218 e | sum_count == 0 = nan
219 | otherwise = sum $ f <$> children'
220 f (k, child) = if pred k then chc * P.logBase 2 (fromIntegral c)
221 else - chc * P.logBase 2 chc
222 where
223 chc = fromIntegral (_node_count child) / fromIntegral c
224
225 nodeEntropy inE (Node _ e _) = e ^. inE
226 nodeEntropy _ (Leaf _) = nan
227
228 nodeChild k (Node _ _ cs) = fromMaybe emptyTrie (Map.lookup k cs)
229 nodeChild _ (Leaf _) = emptyTrie
230
231 findTrie ks t = L.foldl (flip nodeChild) t ks
232
233 printTrie inE t = do
234 P.putStrLn . Tree.drawTree
235 . fmap show
236 $ toTree (NonTerminal "") t
237 P.putStrLn " Levels:"
238 forM_ (normalizationLevels inE t) $ \level ->
239 P.putStrLn $ " " <> show level
240
241 evTrie inE setEV = go nan
242 where
243 go _ (Leaf c) = Leaf c
244 go e0 (Node c i children) = Node c (i & setEV .~ ev e0 e1) $ go e1 <$> children
245 where e1 = i ^. inE
246
247 ev 0 0 = nan
248 ev i0 i1 = i1 - i0
249
250 normalizeEntropy inE modE t = go (modE identity) (normalizationLevels inE t) t
251 where
252 go _ _ (Leaf c) = Leaf c
253 go _ [] _ = panic "normalizeEntropy' empty levels"
254 go f ((m, v, _) : ess) (Node c i children)
255 = Node c (f i) $ go (modE $ normalizeLevel m v) ess <$> children
256 ------------------------------------------------------------------------
257
258 levels :: Trie k e -> [[Trie k e]]
259 levels = L.takeWhile (not . L.null) . L.iterate (L.concatMap subForest) . pure
260 where
261 subForest :: Trie k e -> [Trie k e]
262 subForest (Leaf _) = []
263 subForest (Node _ _ children) = Map.elems children
264
265 entropyLevels :: Entropy e => Getting e i e -> Trie k i -> [[e]]
266 entropyLevels inE = fmap (noNaNs . map (nodeEntropy inE)) . L.tail . levels
267
268 normalizationLevels :: Entropy e => Getting e i e -> Trie k i -> [(e, e, Int)]
269 normalizationLevels inE = fmap f . entropyLevels inE
270 where
271 f es = (mean es, deviation es, length es)
272
273 ------------------------------------------------------------------------
274
275 data Tries k e = Tries
276 { _fwd :: Trie k e
277 , _bwd :: Trie k e
278 }
279
280 makeLenses ''Tries
281
282 deriving instance (Show k, Show e) => Show (Tries k e)
283
284 buildTries :: Int -> [[Token]] -> Tries Token ()
285 buildTries n sentences = Tries
286 { _fwd = buildTrie Forward n sentences
287 , _bwd = buildTrie Backward n sentences
288 }
289
290 instance IsTrie Tries where
291
292 nodeEntropy inE (Tries f b) = mean [nodeEntropy inE f, nodeEntropy inE b]
293
294 findTrie ks (Tries f b) = Tries (findTrie ks f) (findTrie (reverse ks) b)
295
296 nodeChild = onTries . nodeChild
297
298 entropyTrie = onTries . entropyTrie
299
300 evTrie inE setEV = onTries $ evTrie inE setEV
301
302 normalizeEntropy inE = onTries . normalizeEntropy inE
303
304 printTrie inE (Tries f b) = do
305 P.putStrLn "Forward:"
306 printTrie inE f
307 P.putStrLn ""
308 P.putStrLn "Backward:"
309 printTrie inE b
310
311 onTries :: (Trie k i -> Trie k o) -> Tries k i -> Tries k o
312 onTries h (Tries f b) = Tries (h f) (h b)
313
314 ------------------------------------------------------------------------
315 mayCons :: [a] -> [[a]] -> [[a]]
316 mayCons [] xss = xss
317 mayCons xs xss = xs : xss
318
319 {-
320 split :: (IsTrie trie, Entropy e) => Lens' i e -> trie Token i -> [Token] -> [[Token]]
321 split _ _ [] = []
322 split inE t (Terminal Start:xs) = split inE t xs
323 split inE t (x0:xs0) = go [x0] xs0
324 where
325 go pref [] = [pref]
326 go pref (Terminal Stop:_) = [pref]
327 go _ (Terminal Start:_) = panic "split impossible"
328 go pref (x:xs) =
329 -- trace (show (if acc then "ACC" else "CUT", (prefx, epxt), if acc then ">" else "<=", ((pref, ept), "+", ([x], ext)))) $
330 if acc
331 then go prefx xs
332 else mayCons pref $ go [x] xs
333 where
334 prefx = pref <> [x]
335 pt = findTrie pref t
336 pxt = findTrie prefx t
337 xt = findTrie [x] t
338 ept = ne pt
339 -- ^ entropy of the current prefix
340 ext = ne xt
341 -- ^ entropy of [x]
342 epxt = ne pxt
343 -- ^ entropy of the current prefix plus x
344 acc = P.isNaN ept || P.isNaN ext || not (P.isNaN epxt) -- && (epxt > mean [ept, ext])
345
346 -- aut(["in","this","paper"]) > aut(["in","this"]) + aut(["paper"])
347
348 ne = nodeEntropy inE
349 -}
350
351 split :: Entropy e => Int -> Lens' i e -> Tries Token i -> [Token] -> [[Text]]
352 split _ _ _ [] = []
353 split _ _ _ [t] = pure <$> nonTerminals [t]
354 split n inE t ts = nonTerminals pref `mayCons` split n inE t (drop (length pref) ts)
355 where
356 pref = maximumWith (\ks -> nodeEntropy inE $ findTrie ks t)
357 (L.tail . L.inits . take n $ ts)
358
359
360 {-
361 split :: Entropy e => Lens' i e -> Tries Token i -> [Token] -> [[Token]]
362 split inE t0 ts =
363 maximumWith (sum . map $ nodeAutonomy inE t0) (all the splits of ts)
364 -}
365
366 ------------------------------------------------------------------------
367
368 mainEleve :: Int -> [[Text]] -> [[[Text]]]
369 mainEleve n x = mainEleve' n x x
370
371 mainEleve' :: Int -> [[Text]] -> [[Text]] -> [[[Text]]]
372 mainEleve' n x y = mainEleveWith x' n y
373 where
374 x' = buildTries n (fmap toToken x)
375 -- (fmap toToken i) is computed twice, since mainEleveWith is computing it too
376
377 -- | This function should take the longest possible chain of:
378 -- mainEleve'' n x y = maxChainSizeOf [ mainEleve' n x y
379 -- , mainEleve' n x x
380 -- , mainEleve' n y y
381 -- ]
382 mainEleve'' :: Int -> [[Text]] -> [[Text]] -> [[[Text]]]
383 mainEleve'' = undefined
384
385 mainEleveWith :: Tries Token () -> Int -> [[Text]] -> [[[Text]]]
386 mainEleveWith m n i = fmap (split n info_autonomy t) (fmap toToken i)
387 where
388 t :: Tries Token (I Double)
389 t = normalizeEntropy info_entropy_var set_autonomy
390 $ evTrie identity set_entropy_var
391 $ entropyTrie isTerminal m
392
393 ------------------------------------------------------------------------
394
395 type Checks e = [(Text, Int, e, e, e, e, e, e, e, e, e)]
396
397 testEleve :: e ~ Double => Bool -> Int -> [Text] -> Checks e -> IO Bool
398 testEleve debug n output checks = do
399 let
400 res = split (1 + n) info_autonomy nt <$> input
401 when debug $ do
402 P.putStrLn . show $ (printToken <$>) <$> input
403 P.putStrLn ""
404 printTrie info_entropy nt
405 P.putStrLn ""
406 P.putStrLn "Splitting:"
407 P.putStrLn $ show res
408 forM_ checks checker
409 pure $ expected == res
410
411 where
412 out = T.words <$> output
413 expected = fmap (T.splitOn "-") <$> out
414 input = toToken . (T.splitOn "-" =<<) <$> out
415
416 nt :: Tries Token (I Double)
417 nt = normalizeEntropy info_entropy_var set_autonomy
418 . evTrie identity set_entropy_var
419 . entropyTrie isTerminal
420 $ buildTries n input
421
422 check f msg ref my =
423 if f ref my
424 then P.putStrLn $ " \ESC[32mPASS\ESC[m " <> msg <> " " <> show ref
425 else P.putStrLn $ " \ESC[31mFAIL\ESC[m " <> msg <> " ref=" <> show ref <> " my=" <> show my
426
427 checker (ngram, count, entropy, ev, autonomy, fwd_entropy, fwd_ev, fwd_autonomy, bwd_entropy, bwd_ev, bwd_autonomy) = do
428 let ns = parseToken <$> T.words ngram
429 nt' = findTrie ns nt
430
431 P.putStrLn $ " " <> T.unpack ngram <> ":"
432 check (==) "count" count (_node_count (_fwd nt'))
433
434 check sim "entropy" entropy (nodeEntropy info_entropy nt' )
435 check sim "ev" ev (nodeEntropy info_entropy_var nt' )
436 check sim "autonomy" autonomy (nodeEntropy info_autonomy nt' )
437
438 check sim "fwd_entropy" fwd_entropy (nodeEntropy info_entropy (_fwd nt'))
439 check sim "fwd_ev" fwd_ev (nodeEntropy info_entropy_var (_fwd nt'))
440 check sim "fwd_autonomy" fwd_autonomy (nodeEntropy info_autonomy (_fwd nt'))
441
442 check sim "bwd_entropy" bwd_entropy (nodeEntropy info_entropy (_bwd nt'))
443 check sim "bwd_ev" bwd_ev (nodeEntropy info_entropy_var (_bwd nt'))
444 check sim "bwd_autonomy" bwd_autonomy (nodeEntropy info_autonomy (_bwd nt'))
445
446 -- | TODO real data is a list of tokenized sentences
447 example0, example1, example2, example3, example4, example5, example6, example7, example8, example9 :: [Text]
448 example0 = ["New-York is New-York and New-York"]
449 example1 = ["to-be or not to-be"]
450 example2 = ["to-be-or not to-be-or NOT to-be and"]
451 example3 = example0 <> example0
452 -- > TEST: Should not have York New in the trie
453 example4 = ["a-b-c-d e a-b-c-d f"]
454 example5 = ["a-b-c-d-e f a-b-c-d-e g a-b-c-d-e"]
455 example6 = ["le-petit chat"
456 ,"le-petit chien"
457 ,"le-petit rat"
458 ,"le gros rat"
459 ]
460 example7 = ["a-b d", "a-c e", "a-c", "a-b", "a-b", "a-c", "a-c", "a-b"]
461 -- example8 = ["z f", "z", "z", "z"] <> example7
462 example8 = ["z", "z", "z", "z"] <> example7 <> example7 <> example7
463 example9 = (T.replace "z" "a") <$> example8
464 --example8 = ["a-b d", "a-c e", "a f", "a-c g", "a-b h", "a i", "a j", "a-b k", "a-c l", "a-c m", "a n", "a-b o"]
465
466 checks0, checks2, checks7, checks8, checks9 :: Checks Double
467
468 checks0 =
469 -- [(token, count, entropy, ev, autonomy, fwd_entropy, fwd_ev, fwd_autonomy, bwd_entropy, bwd_ev, bwd_autonomy)]
470 [ ("<start>", 1, nan, nan, nan, 0.0, -2.113283334294875, -0.5000000000000002, nan, nan, nan)
471 , ("New", 3, 0.792481250360578, -1.3208020839342969, 0.7499999999999999, 0.0, -2.113283334294875, -0.5000000000000002, 1.584962500721156, -0.5283208335737188, 2.0)
472 , ("York", 3, 0.792481250360578, -1.3208020839342969, 0.7499999999999999, 1.584962500721156, -0.5283208335737188, 2.0, 0.0, -2.113283334294875, -0.5000000000000002)
473 , ("is", 1, 0, -2.113283334294875, -0.5000000000000002, 0.0, -2.113283334294875, -0.5000000000000002, 0.0, -2.113283334294875, -0.5000000000000002)
474 , ("and", 1, 0, -2.113283334294875, -0.5000000000000002, 0.0, -2.113283334294875, -0.5000000000000002, 0.0, -2.113283334294875, -0.5000000000000002)
475 , ("<stop>", 0, nan, nan, nan, nan, nan, nan, 0.0, -2.113283334294875, -0.5000000000000002)
476 , ("<start> New", 1, nan, nan, nan, 0.0, nan, nan, nan, nan, nan)
477 , ("New York", 3, 1.584962500721156, 1.584962500721156, 1.414213562373095, 1.584962500721156, 1.584962500721156, 1.4142135623730947, 1.584962500721156, 1.584962500721156, 1.4142135623730951)
478 , ("York is", 1, 0, nan, nan, 0.0, -1.584962500721156, -0.7071067811865476, 0.0, nan, nan)
479 , ("is New", 1, 0, nan, nan, 0.0, nan, nan, 0.0, -1.584962500721156, -0.7071067811865474)
480 , ("York and", 1, 0, nan, nan, 0.0, -1.584962500721156, -0.7071067811865476, 0.0, nan, nan)
481 , ("and New", 1, 0, nan, nan, 0.0, nan, nan, 0.0, -1.584962500721156, -0.7071067811865474)
482 , ("York <stop>", 1, nan, nan, nan, nan, nan, nan, 0.0, nan, nan)
483 , ("<start> New York", 1, nan, nan, nan, 0.0, nan, nan, nan, nan, nan)
484 , ("New York is", 1, 0, nan, nan, 0.0, -1.584962500721156, nan, 0.0, nan, nan)
485 , ("York is New", 1, 0, nan, nan, 0.0, nan, nan, 0.0, nan, nan)
486 , ("is New York", 1, 0, nan, nan, 0.0, nan, nan, 0.0, -1.584962500721156, nan)
487 , ("New York and", 1, 0, nan, nan, 0.0, -1.584962500721156, nan, 0.0, nan, nan)
488 , ("York and New", 1, 0, nan, nan, 0.0, nan, nan, 0.0, nan, nan)
489 , ("and New York", 1, 0, nan, nan, 0.0, nan, nan, 0.0, -1.584962500721156, nan)
490 , ("New York <stop>", 1, nan, nan, nan, nan, nan, nan, 0.0, nan, nan)
491 ]
492
493 checks2 = []
494 {-
495 [("to be", 3, 1.2516291673878228, 1.2516291673878228, 1.5535694744293167, nan, 0.9182958340544896)
496 ,("be or", 2, 0.5, nan, nan, nan, 1.0)
497 ,("or not", 1, 0.0, nan, nan, nan, 0.0)
498 ,("not to", 1, 0.0, nan, nan, nan, 0.0)
499 ,("or NOT", 1, 0.0, nan, nan, nan, 0.0)
500 ,("NOT to", 1, 0.0, nan, nan, nan, 0.0)
501 ,("be and", 1, 0.0, nan, nan, nan, 0.0)
502 ]
503 -}
504
505 checks7 =
506 [ ("a b", 4, 2, 1.5, 1.0106455960380136, 2, 1, 0.7302967433402215, 2, 2, 1.2909944487358056)
507 , ("a c", 4, 2, 1.5, 1.0106455960380136, 2, 1, 0.7302967433402215, 2, 2, 1.2909944487358056)
508 , ("a", 8, 2, -0.7139421727208477, 0.9315597394596105, 1, -1.7139421727208477, 0.1695158759052029, 3, 0.2860578272791523, 1.693603603014018)
509 ]
510
511 checks8 =
512 [ ("a b", 4, 2, 1.5, 1.2384061243840367, 2, 1, 0.9190418024406298, 2, 2, 1.5577704463274435)
513 , ("a c", 4, 2, 1.5, 1.2384061243840367, 2, 1, 0.9190418024406298, 2, 2, 1.5577704463274435)
514 , ("a", 8, 2, -1.1151193576322829, 0.8012882295122719, 1, -2.115119357632283, 1.1025957503820932e-2, 3, -0.11511935763228287, 1.5915505015207227)
515 , ("z", 4, 2, -1.1151193576322829, 0.9576679529201777, 2, -1.1151193576322829, 1.0906240295212841, 2, -1.1151193576322829, 0.8247118763190712)
516 ]
517
518 checks9 =
519 [ ("a b", 4, 2, 0.8741854163060885, 0.9234576822288185, 2, -0.25162916738782304, 0.2891449181301934, 2, 2, 1.5577704463274435)
520 , ("a c", 4, 2, 0.8741854163060885, 0.9234576822288185, 2, -0.25162916738782304, 0.2891449181301934, 2, 2, 1.5577704463274435)
521 , ("a", 12, 2.91829583405449, 3.763498724462999e-2, 1.518835832034022, 2.251629167387823, -0.6290316794220367, 1.2162041043595873, 3.5849625007211565, 0.7043016539112967, 1.8214675597084569)
522 ]
523
524 runTestsEleve :: Bool -> IO ()
525 runTestsEleve doChecks =
526 forM_
527 [("example0", 3, example0, checks0)
528 ,("example0", 2, example0, [])
529 ,("example1", 2, example1, [])
530 ,("example2", 3, example2, checks2)
531 ,("example3", 2, example3, [])
532 ,("example4", 4, example4, [])
533 ,("example5", 5, example5, [])
534 ,("example6", 2, example6, [])
535 ,("example7", 2, example7, checks7)
536 ,("example8", 2, example8, checks8)
537 ,("example9", 2, example9, checks9)
538 ]
539 (\(name, n, ex, checks) -> do
540 P.putStrLn $ name <> " " <> show n
541 b <- testEleve False n ex (if doChecks then checks else [])
542 P.putStrLn $ " splitting: " <> if b then "PASS" else "FAIL"
543 )