]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Core/Text/Terms.hs
fixe the label
[gargantext.git] / src / Gargantext / Core / Text / Terms.hs
1 {-|
2 Module : Gargantext.Core.Text.Ngrams
3 Description : Ngrams definition and tools
4 Copyright : (c) CNRS, 2017 - present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 An @n-gram@ is a contiguous sequence of n items from a given sample of
11 text. In Gargantext application the items are words, n is a non negative
12 integer.
13
14 Using Latin numerical prefixes, an n-gram of size 1 is referred to as a
15 "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size
16 3 is a "trigram". English cardinal numbers are sometimes used, e.g.,
17 "four-gram", "five-gram", and so on.
18
19 Source: https://en.wikipedia.org/wiki/Ngrams
20
21 TODO
22 group Ngrams -> Tree
23 compute occ by node of Tree
24 group occs according groups
25
26 compute cooccurrences
27 compute graph
28
29 -}
30
31 {-# LANGUAGE TemplateHaskell #-}
32 {-# LANGUAGE ConstrainedClassMethods #-}
33
34 module Gargantext.Core.Text.Terms
35 where
36
37 import Control.Lens
38 import Data.Map (Map)
39 import qualified Data.Map as Map
40 import Data.Text (Text)
41 import Data.Traversable
42 import GHC.Base (String)
43 import GHC.Generics (Generic)
44 import Gargantext.Core
45 import Gargantext.Core.Types
46 import Gargantext.Core.Flow.Types
47 import Gargantext.Prelude
48 import Gargantext.Core.Text (sentences, HasText(..))
49 import Gargantext.Core.Text.Terms.Eleve (mainEleveWith, Tries, Token, buildTries, toToken)
50 import Gargantext.Database.Schema.Ngrams (Ngrams(..), NgramsType(..))
51 import Gargantext.Core.Text.Terms.Mono (monoTerms)
52 import Gargantext.Database.Prelude (Cmd)
53 import Gargantext.Core.Text.Terms.Mono.Stem (stem)
54 import Gargantext.Core.Text.Terms.Mono.Token.En (tokenize)
55 import Gargantext.Core.Text.Terms.Multi (multiterms)
56 import qualified Data.List as List
57 import qualified Data.Set as Set
58 import qualified Data.Text as Text
59
60 data TermType lang
61 = Mono { _tt_lang :: !lang }
62 | Multi { _tt_lang :: !lang }
63 | MonoMulti { _tt_lang :: !lang }
64 | Unsupervised { _tt_lang :: !lang
65 , _tt_windowSize :: !Int
66 , _tt_ngramsSize :: !Int
67 , _tt_model :: !(Maybe (Tries Token ()))
68 }
69 deriving Generic
70
71 makeLenses ''TermType
72 --group :: [Text] -> [Text]
73 --group = undefined
74
75 -- remove Stop Words
76 -- map (filter (\t -> not . elem t)) $
77 ------------------------------------------------------------------------
78 -- | Sugar to extract terms from text (hiddeng mapM from end user).
79 --extractTerms :: Traversable t => TermType Lang -> t Text -> IO (t [Terms])
80 extractTerms :: TermType Lang -> [Text] -> IO [[Terms]]
81
82 extractTerms (Unsupervised l n s m) xs = mapM (terms (Unsupervised l n s (Just m'))) xs
83 where
84 m' = case m of
85 Just m''-> m''
86 Nothing -> newTries n (Text.intercalate " " xs)
87
88 extractTerms termTypeLang xs = mapM (terms termTypeLang) xs
89
90
91 ------------------------------------------------------------------------
92 withLang :: HasText a
93 => TermType Lang
94 -> [DocumentWithId a]
95 -> TermType Lang
96 withLang (Unsupervised l n s m) ns = Unsupervised l n s m'
97 where
98 m' = case m of
99 Nothing -> -- trace ("buildTries here" :: String)
100 Just $ buildTries n ( fmap toToken
101 $ uniText
102 $ Text.intercalate " . "
103 $ List.concat
104 $ map hasText ns
105 )
106 just_m -> just_m
107 withLang l _ = l
108
109 ------------------------------------------------------------------------
110 class ExtractNgramsT h
111 where
112 extractNgramsT :: HasText h
113 => TermType Lang
114 -> h
115 -> Cmd err (Map Ngrams (Map NgramsType Int))
116
117 filterNgramsT :: Int -> Map Ngrams (Map NgramsType Int)
118 -> Map Ngrams (Map NgramsType Int)
119 filterNgramsT s ms = Map.fromList $ map (\a -> filter' s a) $ Map.toList ms
120 where
121 filter' s' (ng@(Ngrams t n),y) = case (Text.length t) < s' of
122 True -> (ng,y)
123 False -> (Ngrams (Text.take s' t) n , y)
124
125
126 -- =======================================================
127
128 -- | Terms from Text
129 -- Mono : mono terms
130 -- Multi : multi terms
131 -- MonoMulti : mono and multi
132 -- TODO : multi terms should exclude mono (intersection is not empty yet)
133 terms :: TermType Lang -> Text -> IO [Terms]
134 terms (Mono lang) txt = pure $ monoTerms lang txt
135 terms (Multi lang) txt = multiterms lang txt
136 terms (MonoMulti lang) txt = terms (Multi lang) txt
137 terms (Unsupervised lang n s m) txt = termsUnsupervised (Unsupervised lang n s (Just m')) txt
138 where
139 m' = maybe (newTries n txt) identity m
140 -- terms (WithList list) txt = pure . concat $ extractTermsWithList list txt
141 ------------------------------------------------------------------------
142
143 text2term :: Lang -> [Text] -> Terms
144 text2term _ [] = Terms [] Set.empty
145 text2term lang txt = Terms txt (Set.fromList $ map (stem lang) txt)
146
147 isPunctuation :: Text -> Bool
148 isPunctuation x = List.elem x $ (Text.pack . pure)
149 <$> ("!?(),;." :: String)
150
151 -- | Unsupervised ngrams extraction
152 -- language agnostic extraction
153 -- TODO: remove IO
154 -- TODO: newtype BlockText
155
156 type WindowSize = Int
157 type MinNgramSize = Int
158
159 termsUnsupervised :: TermType Lang -> Text -> IO [Terms]
160 termsUnsupervised (Unsupervised l n s m) =
161 pure
162 . map (text2term l)
163 . List.nub
164 . (List.filter (\l' -> List.length l' >= s))
165 . List.concat
166 . mainEleveWith (maybe (panic "no model") identity m) n
167 . uniText
168 termsUnsupervised _ = undefined
169
170 newTries :: Int -> Text -> Tries Token ()
171 newTries n t = buildTries n (fmap toToken $ uniText t)
172
173 -- | TODO removing long terms > 24
174 uniText :: Text -> [[Text]]
175 uniText = map (List.filter (not . isPunctuation))
176 . map tokenize
177 . sentences -- TODO get sentences according to lang
178 . Text.toLower
179