2 Module : Gargantext.Text.Ngrams
3 Description : Ngrams definition and tools
4 Copyright : (c) CNRS, 2017 - present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 An @n-gram@ is a contiguous sequence of n items from a given sample of
11 text. In Gargantext application the items are words, n is a non negative
14 Using Latin numerical prefixes, an n-gram of size 1 is referred to as a
15 "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size
16 3 is a "trigram". English cardinal numbers are sometimes used, e.g.,
17 "four-gram", "five-gram", and so on.
19 Source: https://en.wikipedia.org/wiki/Ngrams
23 compute occ by node of Tree
24 group occs according groups
31 {-# LANGUAGE NoImplicitPrelude #-}
32 {-# LANGUAGE OverloadedStrings #-}
33 {-# LANGUAGE TemplateHaskell #-}
35 module Gargantext.Text.Terms
39 import Data.Text (Text)
40 import Data.Traversable
41 import GHC.Base (String)
43 import Gargantext.Prelude
44 import Gargantext.Core
45 import Gargantext.Core.Types
46 import Gargantext.Text.Terms.Multi (multiterms)
47 import Gargantext.Text.Terms.Mono (monoTerms)
48 import Gargantext.Text.Terms.Mono.Stem (stem)
50 import qualified Data.Set as Set
51 import qualified Data.List as List
52 import qualified Data.Text as Text
53 import Gargantext.Text (sentences)
54 import Gargantext.Text.Terms.Mono.Token.En (tokenize)
55 import Gargantext.Text.Terms.Eleve (mainEleveWith, Tries, Token, buildTries, toToken)
58 = Mono { _tt_lang :: lang }
59 | Multi { _tt_lang :: lang }
60 | MonoMulti { _tt_lang :: lang }
61 | Unsupervised { _tt_lang :: lang
62 , _tt_windoSize :: Int
63 , _tt_ngramsSize :: Int
64 , _tt_model :: Maybe (Tries Token ())
68 --group :: [Text] -> [Text]
72 -- map (filter (\t -> not . elem t)) $
73 ------------------------------------------------------------------------
74 -- | Sugar to extract terms from text (hiddeng mapM from end user).
75 --extractTerms :: Traversable t => TermType Lang -> t Text -> IO (t [Terms])
76 extractTerms :: TermType Lang -> [Text] -> IO [[Terms]]
78 extractTerms (Unsupervised l n s m) xs = mapM (terms (Unsupervised l n s (Just m'))) xs
82 Nothing -> newTries n (Text.intercalate " " xs)
84 extractTerms termTypeLang xs = mapM (terms termTypeLang) xs
88 ------------------------------------------------------------------------
91 -- Multi : multi terms
92 -- MonoMulti : mono and multi
93 -- TODO : multi terms should exclude mono (intersection is not empty yet)
94 terms :: TermType Lang -> Text -> IO [Terms]
95 terms (Mono lang) txt = pure $ monoTerms lang txt
96 terms (Multi lang) txt = multiterms lang txt
97 terms (MonoMulti lang) txt = terms (Multi lang) txt
98 terms (Unsupervised lang n s m) txt = termsUnsupervised (Unsupervised lang n s (Just m')) txt
100 m' = maybe (newTries n txt) identity m
101 -- terms (WithList list) txt = pure . concat $ extractTermsWithList list txt
102 ------------------------------------------------------------------------
104 text2term :: Lang -> [Text] -> Terms
105 text2term _ [] = Terms [] Set.empty
106 text2term lang txt = Terms txt (Set.fromList $ map (stem lang) txt)
108 isPunctuation :: Text -> Bool
109 isPunctuation x = List.elem x $ (Text.pack . pure)
110 <$> ("!?(),;." :: String)
112 -- | Unsupervised ngrams extraction
113 -- language agnostic extraction
115 -- TODO: newtype BlockText
117 type WindowSize = Int
118 type MinNgramSize = Int
120 termsUnsupervised :: TermType Lang -> Text -> IO [Terms]
121 termsUnsupervised (Unsupervised l n s m) =
125 . (List.filter (\l' -> List.length l' > s))
127 . mainEleveWith (maybe (panic "no model") identity m) n
129 termsUnsupervised _ = undefined
131 newTries :: Int -> Text -> Tries Token ()
132 newTries n t = buildTries n (fmap toToken $ uniText t)
134 uniText :: Text -> [[Text]]
135 uniText = map (List.filter (not . isPunctuation))
137 . sentences -- | TODO get sentences according to lang