]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Text/Terms.hs
adding the ngrams dynamics
[gargantext.git] / src / Gargantext / Text / Terms.hs
1 {-|
2 Module : Gargantext.Text.Ngrams
3 Description : Ngrams definition and tools
4 Copyright : (c) CNRS, 2017 - present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 An @n-gram@ is a contiguous sequence of n items from a given sample of
11 text. In Gargantext application the items are words, n is a non negative
12 integer.
13
14 Using Latin numerical prefixes, an n-gram of size 1 is referred to as a
15 "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size
16 3 is a "trigram". English cardinal numbers are sometimes used, e.g.,
17 "four-gram", "five-gram", and so on.
18
19 Source: https://en.wikipedia.org/wiki/Ngrams
20
21 TODO
22 group Ngrams -> Tree
23 compute occ by node of Tree
24 group occs according groups
25
26 compute cooccurrences
27 compute graph
28
29 -}
30
31 {-# LANGUAGE NoImplicitPrelude #-}
32 {-# LANGUAGE OverloadedStrings #-}
33 {-# LANGUAGE TemplateHaskell #-}
34
35 module Gargantext.Text.Terms
36 where
37
38 import Control.Lens
39 import Data.Text (Text)
40 import Data.Traversable
41 import GHC.Base (String)
42
43 import Gargantext.Prelude
44 import Gargantext.Core
45 import Gargantext.Core.Types
46 import Gargantext.Text.Terms.Multi (multiterms)
47 import Gargantext.Text.Terms.Mono (monoTerms)
48 import Gargantext.Text.Terms.Mono.Stem (stem)
49
50 import qualified Data.Set as Set
51 import qualified Data.List as List
52 import qualified Data.Text as Text
53 import Gargantext.Text (sentences)
54 import Gargantext.Text.Terms.Mono.Token.En (tokenize)
55 import Gargantext.Text.Terms.Eleve (mainEleveWith, Tries, Token, buildTries, toToken)
56
57 data TermType lang
58 = Mono { _tt_lang :: lang }
59 | Multi { _tt_lang :: lang }
60 | MonoMulti { _tt_lang :: lang }
61 | Unsupervised { _tt_lang :: lang
62 , _tt_windoSize :: Int
63 , _tt_ngramsSize :: Int
64 , _tt_model :: Maybe (Tries Token ())
65 }
66 makeLenses ''TermType
67
68 --group :: [Text] -> [Text]
69 --group = undefined
70
71 -- remove Stop Words
72 -- map (filter (\t -> not . elem t)) $
73 ------------------------------------------------------------------------
74 -- | Sugar to extract terms from text (hiddeng mapM from end user).
75 --extractTerms :: Traversable t => TermType Lang -> t Text -> IO (t [Terms])
76 extractTerms :: TermType Lang -> [Text] -> IO [[Terms]]
77
78 extractTerms (Unsupervised l n s m) xs = mapM (terms (Unsupervised l n s (Just m'))) xs
79 where
80 m' = case m of
81 Just m''-> m''
82 Nothing -> newTries n (Text.intercalate " " xs)
83
84 extractTerms termTypeLang xs = mapM (terms termTypeLang) xs
85
86
87
88 ------------------------------------------------------------------------
89 -- | Terms from Text
90 -- Mono : mono terms
91 -- Multi : multi terms
92 -- MonoMulti : mono and multi
93 -- TODO : multi terms should exclude mono (intersection is not empty yet)
94 terms :: TermType Lang -> Text -> IO [Terms]
95 terms (Mono lang) txt = pure $ monoTerms lang txt
96 terms (Multi lang) txt = multiterms lang txt
97 terms (MonoMulti lang) txt = terms (Multi lang) txt
98 terms (Unsupervised lang n s m) txt = termsUnsupervised (Unsupervised lang n s (Just m')) txt
99 where
100 m' = maybe (newTries n txt) identity m
101 -- terms (WithList list) txt = pure . concat $ extractTermsWithList list txt
102 ------------------------------------------------------------------------
103
104 text2term :: Lang -> [Text] -> Terms
105 text2term _ [] = Terms [] Set.empty
106 text2term lang txt = Terms txt (Set.fromList $ map (stem lang) txt)
107
108 isPunctuation :: Text -> Bool
109 isPunctuation x = List.elem x $ (Text.pack . pure)
110 <$> ("!?(),;." :: String)
111
112 -- | Unsupervised ngrams extraction
113 -- language agnostic extraction
114 -- TODO: remove IO
115 -- TODO: newtype BlockText
116
117 type WindowSize = Int
118 type MinNgramSize = Int
119
120 termsUnsupervised :: TermType Lang -> Text -> IO [Terms]
121 termsUnsupervised (Unsupervised l n s m) =
122 pure
123 . map (text2term l)
124 . List.nub
125 . (List.filter (\l' -> List.length l' > s))
126 . List.concat
127 . mainEleveWith (maybe (panic "no model") identity m) n
128 . uniText
129 termsUnsupervised _ = undefined
130
131 newTries :: Int -> Text -> Tries Token ()
132 newTries n t = buildTries n (fmap toToken $ uniText t)
133
134 uniText :: Text -> [[Text]]
135 uniText = map (List.filter (not . isPunctuation))
136 . map tokenize
137 . sentences -- | TODO get sentences according to lang
138
139