]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Viz/Phylo/TemporalMatching.hs
change the temporal matching
[gargantext.git] / src / Gargantext / Viz / Phylo / TemporalMatching.hs
1 {-|
2 Module : Gargantext.Viz.Phylo.TemporalMatching
3 Description : Module dedicated to the adaptative temporal matching of a Phylo.
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9 -}
10
11 {-# LANGUAGE NoImplicitPrelude #-}
12 {-# LANGUAGE FlexibleContexts #-}
13 {-# LANGUAGE OverloadedStrings #-}
14 {-# LANGUAGE MultiParamTypeClasses #-}
15
16 module Gargantext.Viz.Phylo.TemporalMatching where
17
18 import Data.List (concat, splitAt, tail, sortOn, (++), intersect, null, inits, groupBy, scanl, nub, union, dropWhile, partition, or)
19 import Data.Map (Map, fromList, elems, restrictKeys, unionWith, intersectionWith, findWithDefault, keys, (!), filterWithKey)
20
21 import Gargantext.Prelude
22 import Gargantext.Viz.AdaptativePhylo
23 import Gargantext.Viz.Phylo.PhyloTools
24
25 -- import Prelude (logBase)
26 import Control.Lens hiding (Level)
27 import Control.Parallel.Strategies (parList, rdeepseq, using)
28 -- import Debug.Trace (trace)
29
30 import qualified Data.Set as Set
31
32
33 -------------------
34 -- | Proximity | --
35 -------------------
36
37
38 -- | Process the inverse sumLog
39 sumInvLog :: Double -> [Double] -> Double
40 sumInvLog s l = foldl (\mem x -> mem + (1 / log (s + x))) 0 l
41
42
43 -- | Process the sumLog
44 sumLog :: Double -> [Double] -> Double
45 sumLog s l = foldl (\mem x -> mem + log (s + x)) 0 l
46
47
48 -- | To compute a jaccard similarity between two lists
49 jaccard :: [Int] -> [Int] -> Double
50 jaccard inter' union' = ((fromIntegral . length) $ inter') / ((fromIntegral . length) $ union')
51
52
53 -- | To process a WeighedLogJaccard distance between to coocurency matrix
54 weightedLogJaccard :: Double -> Double -> Cooc -> Cooc -> [Int] -> [Int] -> Double
55 weightedLogJaccard sens docs cooc cooc' ngrams ngrams'
56 | null ngramsInter = 0
57 | ngramsInter == ngramsUnion = 1
58 | sens == 0 = jaccard ngramsInter ngramsUnion
59 | sens > 0 = (sumInvLog sens coocInter) / (sumInvLog sens coocUnion)
60 | otherwise = (sumLog sens coocInter) / (sumLog sens coocUnion)
61 where
62 --------------------------------------
63 ngramsInter :: [Int]
64 ngramsInter = intersect ngrams ngrams'
65 --------------------------------------
66 ngramsUnion :: [Int]
67 ngramsUnion = union ngrams ngrams'
68 --------------------------------------
69 coocInter :: [Double]
70 coocInter = elems $ map (/docs) $ filterWithKey (\(k,k') _ -> k == k') $ intersectionWith (+) cooc cooc'
71 -- coocInter = elems $ map (/docs) $ intersectionWith (+) cooc cooc'
72 --------------------------------------
73 coocUnion :: [Double]
74 coocUnion = elems $ map (/docs) $ filterWithKey (\(k,k') _ -> k == k') $ unionWith (+) cooc cooc'
75 --------------------------------------
76
77
78 -- | To choose a proximity function
79 pickProximity :: Proximity -> Double -> Cooc -> Cooc -> [Int] -> [Int] -> Double
80 pickProximity proximity docs cooc cooc' ngrams ngrams' = case proximity of
81 WeightedLogJaccard sens _ _ -> weightedLogJaccard sens docs cooc cooc' ngrams ngrams'
82 Hamming -> undefined
83
84
85 -- | To process the proximity between a current group and a pair of targets group
86 toProximity :: Map Date Double -> Proximity -> PhyloGroup -> PhyloGroup -> PhyloGroup -> Double
87 toProximity docs proximity ego target target' =
88 let docs' = sum $ elems docs
89 cooc = if target == target'
90 then (target ^. phylo_groupCooc)
91 else sumCooc (target ^. phylo_groupCooc) (target' ^. phylo_groupCooc)
92 ngrams = if target == target'
93 then (target ^. phylo_groupNgrams)
94 else union (target ^. phylo_groupNgrams) (target' ^. phylo_groupNgrams)
95 in pickProximity proximity docs' (ego ^. phylo_groupCooc) cooc (ego ^. phylo_groupNgrams) ngrams
96
97
98 ------------------------
99 -- | Local Matching | --
100 ------------------------
101
102 toLastPeriod :: Filiation -> [PhyloPeriodId] -> PhyloPeriodId
103 toLastPeriod fil periods = case fil of
104 ToParents -> head' "toLastPeriod" (sortOn fst periods)
105 ToChilds -> last' "toLastPeriod" (sortOn fst periods)
106
107
108 toLazyPairs :: [Pointer] -> Filiation -> Double -> Proximity -> PhyloPeriodId -> [(PhyloGroup,PhyloGroup)] -> [(PhyloGroup,PhyloGroup)]
109 toLazyPairs pointers fil thr prox prd pairs =
110 if null pointers then pairs
111 else let rest = filterPointers prox thr pointers
112 in if null rest
113 then let prd' = toLastPeriod fil (map (fst . fst . fst) pointers)
114 in if prd' == prd
115 then []
116 else filter (\(g,g') ->
117 case fil of
118 ToParents -> ((fst $ g ^. phylo_groupPeriod) < (fst prd'))
119 || ((fst $ g' ^. phylo_groupPeriod) < (fst prd'))
120 ToChilds -> ((fst $ g ^. phylo_groupPeriod) > (fst prd'))
121 || ((fst $ g' ^. phylo_groupPeriod) > (fst prd'))) pairs
122 else []
123
124
125 -- | Find pairs of valuable candidates to be matched
126 makePairs' :: PhyloGroup -> [PhyloGroup] -> [PhyloPeriodId] -> [Pointer] -> Filiation -> Double -> Proximity -> Map Date Double -> [(PhyloGroup,PhyloGroup)]
127 makePairs' ego candidates periods pointers fil thr prox docs =
128 case null periods of
129 True -> []
130 False -> toLazyPairs pointers fil thr prox lastPrd
131 -- | at least on of the pair candidates should be from the last added period
132 $ filter (\(g,g') -> ((g ^. phylo_groupPeriod) == lastPrd)
133 || ((g' ^. phylo_groupPeriod) == lastPrd))
134 $ listToKeys
135 $ filter (\g -> (g ^. phylo_groupPeriod == lastPrd)
136 || ((toProximity docs prox ego ego g) >= thr)) candidates
137 where
138 lastPrd :: PhyloPeriodId
139 lastPrd = toLastPeriod fil periods
140
141
142 filterPointers :: Proximity -> Double -> [Pointer] -> [Pointer]
143 filterPointers proxi thr pts = filter (\(_,w) -> filterProximity proxi thr w) pts
144
145
146 phyloGroupMatching :: [[PhyloGroup]] -> Filiation -> Proximity -> Map Date Double -> Double -> PhyloGroup -> PhyloGroup
147 phyloGroupMatching candidates fil proxi docs thr ego =
148 if (null $ filterPointers proxi thr $ getPeriodPointers fil ego)
149 -- | let's find new pointers
150 then if null nextPointers
151 then addPointers ego fil TemporalPointer []
152 else addPointers ego fil TemporalPointer
153 $ head' "phyloGroupMatching"
154 -- | Keep only the best set of pointers grouped by proximity
155 $ groupBy (\pt pt' -> snd pt == snd pt')
156 $ reverse $ sortOn snd $ head' "pointers" nextPointers
157 -- | Find the first time frame where at leats one pointer satisfies the proximity threshold
158 else addPointers ego fil TemporalPointer
159 $ filterPointers proxi thr $ getPeriodPointers fil ego
160 where
161 nextPointers :: [[Pointer]]
162 nextPointers = take 1
163 $ dropWhile (null)
164 -- | for each time frame, process the proximity on relevant pairs of targeted groups
165 $ scanl (\acc groups ->
166 let periods = nub $ map _phylo_groupPeriod $ concat groups
167 docs' = (filterDocs docs ([ego ^. phylo_groupPeriod] ++ periods))
168 pairs = makePairs' ego (concat groups) periods (getPeriodPointers fil ego) fil thr proxi docs
169 in acc ++ ( filterPointers proxi thr
170 $ concat
171 $ map (\(c,c') ->
172 -- | process the proximity between the current group and a pair of candidates
173 let proximity = toProximity docs' proxi ego c c'
174 in if (c == c')
175 then [(getGroupId c,proximity)]
176 else [(getGroupId c,proximity),(getGroupId c',proximity)] ) pairs )) []
177 $ inits candidates -- | groups from [[1900],[1900,1901],[1900,1901,1902],...]
178
179
180 filterDocs :: Map Date Double -> [PhyloPeriodId] -> Map Date Double
181 filterDocs d pds = restrictKeys d $ periodsToYears pds
182
183
184 -----------------------------
185 -- | Matching Processing | --
186 -----------------------------
187
188
189 getNextPeriods :: Filiation -> Int -> PhyloPeriodId -> [PhyloPeriodId] -> [PhyloPeriodId]
190 getNextPeriods fil max' pId pIds =
191 case fil of
192 ToChilds -> take max' $ (tail . snd) $ splitAt (elemIndex' pId pIds) pIds
193 ToParents -> take max' $ (reverse . fst) $ splitAt (elemIndex' pId pIds) pIds
194
195
196 getCandidates :: Filiation -> PhyloGroup -> [[PhyloGroup]] -> [[PhyloGroup]]
197 getCandidates fil ego targets =
198 case fil of
199 ToChilds -> targets'
200 ToParents -> reverse targets'
201 where
202 targets' :: [[PhyloGroup]]
203 targets' =
204 map (\groups' ->
205 filter (\g' -> (not . null) $ intersect (ego ^. phylo_groupNgrams) (g' ^. phylo_groupNgrams)
206 ) groups') targets
207
208
209 phyloBranchMatching :: Int -> [PhyloPeriodId] -> Proximity -> Double -> Map Date Double -> [PhyloGroup] -> [PhyloGroup]
210 phyloBranchMatching frame periods proximity thr docs branch =
211 -- traceBranchMatching proximity thr
212 matchByPeriods
213 $ groupByField _phylo_groupPeriod branch
214 where
215 --------------------------------------
216 matchByPeriods :: Map PhyloPeriodId [PhyloGroup] -> [PhyloGroup]
217 matchByPeriods branch' = foldl' (\acc prd ->
218 let periodsPar = getNextPeriods ToParents frame prd periods
219 periodsChi = getNextPeriods ToChilds frame prd periods
220 candidatesPar = map (\prd' -> findWithDefault [] prd' branch') periodsPar
221 candidatesChi = map (\prd' -> findWithDefault [] prd' branch') periodsChi
222 docsPar = filterDocs docs ([prd] ++ periodsPar)
223 docsChi = filterDocs docs ([prd] ++ periodsChi)
224 egos = map (\ego -> phyloGroupMatching (getCandidates ToParents ego candidatesPar) ToParents proximity docsPar thr
225 $ phyloGroupMatching (getCandidates ToChilds ego candidatesChi) ToChilds proximity docsChi thr ego)
226 $ findWithDefault [] prd branch'
227 egos' = egos `using` parList rdeepseq
228 in acc ++ egos' ) [] periods
229
230
231 -----------------------
232 -- | Phylo Quality | --
233 -----------------------
234
235
236 relevantBranches :: Int -> [[PhyloGroup]] -> [[PhyloGroup]]
237 relevantBranches term branches =
238 filter (\groups -> (any (\group -> elem term $ group ^. phylo_groupNgrams) groups)) branches
239
240 fScore :: Double -> Int -> [PhyloGroup] -> [[PhyloGroup]] -> Double
241 fScore beta i bk bks =
242 let recall = ( (fromIntegral $ length $ filter (\g -> elem i $ g ^. phylo_groupNgrams) bk)
243 / (fromIntegral $ length $ filter (\g -> elem i $ g ^. phylo_groupNgrams) $ concat bks))
244 accuracy = ( (fromIntegral $ length $ filter (\g -> elem i $ g ^. phylo_groupNgrams) bk)
245 / (fromIntegral $ length bk))
246 in ((1 + beta ** 2) * accuracy * recall)
247 / (((beta ** 2) * accuracy + recall))
248
249
250 wk :: [PhyloGroup] -> Double
251 wk bk = fromIntegral $ length bk
252
253
254 toPhyloQuality' :: Double -> Map Int Double -> [[PhyloGroup]] -> Double
255 toPhyloQuality' beta freq branches =
256 if (null branches)
257 then 0
258 else sum
259 $ map (\i ->
260 let bks = relevantBranches i branches
261 in (freq ! i) * (sum $ map (\bk -> ((wk bk) / (sum $ map wk bks)) * (fScore beta i bk bks)) bks))
262 $ keys freq
263
264
265 -----------------------------
266 -- | Adaptative Matching | --
267 -----------------------------
268
269
270 groupsToBranches :: Map PhyloGroupId PhyloGroup -> [[PhyloGroup]]
271 groupsToBranches groups =
272 -- | run the related component algorithm
273 let egos = groupBy (\gs gs' -> (fst $ fst $ head' "egos" gs) == (fst $ fst $ head' "egos" gs'))
274 $ sortOn (\gs -> fst $ fst $ head' "egos" gs)
275 $ map (\group -> [getGroupId group]
276 ++ (map fst $ group ^. phylo_groupPeriodParents)
277 ++ (map fst $ group ^. phylo_groupPeriodChilds) ) $ elems groups
278 -- | first find the related components by inside each ego's period
279 graph' = map relatedComponents egos
280 -- | then run it for the all the periods
281 graph = zip [1..]
282 $ relatedComponents $ concat (graph' `using` parList rdeepseq)
283 -- | update each group's branch id
284 in map (\(bId,ids) ->
285 let groups' = map (\group -> group & phylo_groupBranchId %~ (\(lvl,lst) -> (lvl,lst ++ [bId])))
286 $ elems $ restrictKeys groups (Set.fromList ids)
287 in groups' `using` parList rdeepseq ) graph
288
289
290 reduceFrequency :: Map Int Double -> [[PhyloGroup]] -> Map Int Double
291 reduceFrequency frequency branches =
292 restrictKeys frequency (Set.fromList $ (nub . concat) $ map _phylo_groupNgrams $ concat branches)
293
294
295 seqMatching :: Proximity -> Double -> Map Int Double -> Int -> Double -> Int -> Map Date Double -> [PhyloPeriodId] -> [([PhyloGroup],Bool)] -> ([PhyloGroup],Bool) -> [([PhyloGroup],Bool)] -> [([PhyloGroup],Bool)]
296 seqMatching proximity beta frequency minBranch egoThr frame docs periods done ego rest =
297 -- | 1) keep or not the new division of ego
298 let done' = done ++ (if snd ego
299 then (if ((null (fst ego')) || (quality > quality'))
300 then
301 -- trace (" ✗ F(β) = " <> show(quality) <> " (vs) " <> show(quality')
302 -- <> " | " <> show(length $ fst ego) <> " groups : "
303 -- <> " |✓ " <> show(length $ fst ego') <> show(map length $ fst ego')
304 -- <> " |✗ " <> show(length $ snd ego') <> "[" <> show(length $ concat $ snd ego') <> "]")
305 [(fst ego,False)]
306 else
307 -- trace (" ✓ F(β) = " <> show(quality) <> " (vs) " <> show(quality')
308 -- <> " | " <> show(length $ fst ego) <> " groups : "
309 -- <> " |✓ " <> show(length $ fst ego') <> show(map length $ fst ego')
310 -- <> " |✗ " <> show(length $ snd ego') <> "[" <> show(length $ concat $ snd ego') <> "]")
311 ((map (\e -> (e,True)) (fst ego')) ++ (map (\e -> (e,False)) (snd ego'))))
312 else [ego])
313 in
314 -- | 2) if there is no more branches in rest then return else continue
315 if null rest
316 then done'
317 else seqMatching proximity beta frequency minBranch egoThr frame docs periods
318 done' (head' "seqMatching" rest) (tail' "seqMatching" rest)
319 where
320 --------------------------------------
321 quality :: Double
322 quality = toPhyloQuality' beta frequency ((map fst done) ++ [fst ego] ++ (map fst rest))
323 --------------------------------------
324 ego' :: ([[PhyloGroup]],[[PhyloGroup]])
325 ego' =
326 let branches = groupsToBranches $ fromList $ map (\g -> (getGroupId g, g))
327 $ phyloBranchMatching frame periods proximity egoThr docs (fst ego)
328 branches' = branches `using` parList rdeepseq
329 in partition (\b -> (length $ nub $ map _phylo_groupPeriod b) >= minBranch) branches'
330 --------------------------------------
331 quality' :: Double
332 quality' = toPhyloQuality' beta frequency
333 ((map fst done) ++ (fst ego') ++ (snd ego') ++ (map fst rest))
334
335
336 recursiveMatching' :: Proximity -> Double -> Int -> Map Int Double -> Double -> Int -> [PhyloPeriodId] -> Map Date Double -> [([PhyloGroup],Bool)] -> [([PhyloGroup],Bool)]
337 recursiveMatching' proximity beta minBranch frequency egoThr frame periods docs branches =
338 if (egoThr >= 1) || ((not . or) $ map snd branches)
339 then branches
340 else
341 let branches' = seqMatching proximity beta frequency minBranch egoThr frame docs periods
342 [] (head' "recursiveMatching" branches) (tail' "recursiveMatching" branches)
343 frequency' = reduceFrequency frequency (map fst branches')
344 in recursiveMatching' proximity beta minBranch frequency' (egoThr + (getThresholdStep proximity)) frame periods docs branches'
345
346
347 temporalMatching :: Phylo -> Phylo
348 temporalMatching phylo = updatePhyloGroups 1
349 (fromList $ map (\g -> (getGroupId g,g)) $ traceMatchEnd $ concat branches)
350 phylo
351 where
352 -- | 2) init the recursiveMatching
353 branches :: [[PhyloGroup]]
354 branches = map fst
355 $ recursiveMatching' (phyloProximity $ getConfig phylo)
356 (_qua_granularity $ phyloQuality $ getConfig phylo)
357 (_qua_minBranch $ phyloQuality $ getConfig phylo)
358 (phylo ^. phylo_termFreq)
359 (getThresholdInit $ phyloProximity $ getConfig phylo)
360 (getTimeFrame $ timeUnit $ getConfig phylo)
361 (getPeriodIds phylo)
362 (phylo ^. phylo_timeDocs)
363 [(groups,True)]
364 -- | 1) for each group process an initial temporal Matching
365 groups :: [PhyloGroup]
366 groups = phyloBranchMatching (getTimeFrame $ timeUnit $ getConfig phylo) (getPeriodIds phylo)
367 (phyloProximity $ getConfig phylo) (getThresholdInit $ phyloProximity $ getConfig phylo)
368 (phylo ^. phylo_timeDocs)
369 (traceTemporalMatching $ getGroupsFromLevel 1 phylo)