]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Core/Viz/Graph/Distances/Matrice.hs
[FEAT] Public screenshot to public home
[gargantext.git] / src / Gargantext / Core / Viz / Graph / Distances / Matrice.hs
1 {-|
2 Module : Gargantext.Graph.Distances.Matrix
3 Description :
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 This module aims at implementig distances of terms context by context is
11 the same referential of corpus.
12
13 Implementation use Accelerate library which enables GPU and CPU computation:
14
15 * Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover.
16 [Accelerating Haskell Array Codes with Multicore GPUs][CKLM+11].
17 In _DAMP '11: Declarative Aspects of Multicore Programming_, ACM, 2011.
18
19 * Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, and Ryan R. Newton.
20 [Type-safe Runtime Code Generation: Accelerate to LLVM][MCGN15].
21 In _Haskell '15: The 8th ACM SIGPLAN Symposium on Haskell_, ACM, 2015.
22
23 -}
24
25 {-# LANGUAGE TypeFamilies #-}
26 {-# LANGUAGE TypeOperators #-}
27 {-# LANGUAGE ScopedTypeVariables #-}
28 {-# LANGUAGE ViewPatterns #-}
29
30 module Gargantext.Core.Viz.Graph.Distances.Matrice
31 where
32
33 import qualified Data.Foldable as P (foldl1)
34 import Debug.Trace (trace)
35 import Data.Array.Accelerate
36 import Data.Array.Accelerate.Interpreter (run)
37 import qualified Gargantext.Prelude as P
38
39
40 -----------------------------------------------------------------------
41 -- | Define a vector
42 --
43 -- >>> vector 3
44 -- Vector (Z :. 3) [0,1,2]
45 vector :: Elt c => Int -> [c] -> (Array (Z :. Int) c)
46 vector n l = fromList (Z :. n) l
47
48 -- | Define a matrix
49 --
50 -- >>> matrix 3 ([1..] :: [Double])
51 -- Matrix (Z :. 3 :. 3)
52 -- [ 1.0, 2.0, 3.0,
53 -- 4.0, 5.0, 6.0,
54 -- 7.0, 8.0, 9.0]
55 matrix :: Elt c => Int -> [c] -> Matrix c
56 matrix n l = fromList (Z :. n :. n) l
57
58 -- | Two ways to get the rank (as documentation)
59 --
60 -- >>> rank (matrix 3 ([1..] :: [Int]))
61 -- 2
62 rank :: (Matrix a) -> Int
63 rank m = arrayRank $ arrayShape m
64
65 -----------------------------------------------------------------------
66 -- | Dimension of a square Matrix
67 -- How to force use with SquareMatrix ?
68 type Dim = Int
69
70 -- | Get Dimension of a square Matrix
71 --
72 -- >>> dim (matrix 3 ([1..] :: [Int]))
73 -- 3
74 dim :: Matrix a -> Dim
75 dim m = n
76 where
77 Z :. _ :. n = arrayShape m
78 -- indexTail (arrayShape m)
79
80 -----------------------------------------------------------------------
81 -- TODO move to Utils
82 runExp :: Elt e => Exp e -> e
83 runExp e = indexArray (run (unit e)) Z
84 -----------------------------------------------------------------------
85
86 -- | Sum of a Matrix by Column
87 --
88 -- >>> run $ matSumCol 3 (use $ matrix 3 [1..])
89 -- Matrix (Z :. 3 :. 3)
90 -- [ 12.0, 15.0, 18.0,
91 -- 12.0, 15.0, 18.0,
92 -- 12.0, 15.0, 18.0]
93 matSumCol :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
94 matSumCol r mat = replicate (constant (Z :. (r :: Int) :. All)) $ sum $ transpose mat
95
96 matSumCol' :: Matrix Double -> Matrix Double
97 matSumCol' m = run $ matSumCol n m'
98 where
99 n = dim m
100 m' = use m
101
102
103 -- | Proba computes de probability matrix: all cells divided by thee sum of its column
104 -- if you need get the probability on the lines, just transpose it
105 --
106 -- >>> run $ matProba 3 (use $ matrix 3 [1..])
107 -- Matrix (Z :. 3 :. 3)
108 -- [ 8.333333333333333e-2, 0.13333333333333333, 0.16666666666666666,
109 -- 0.3333333333333333, 0.3333333333333333, 0.3333333333333333,
110 -- 0.5833333333333334, 0.5333333333333333, 0.5]
111 matProba :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
112 matProba r mat = zipWith (/) mat (matSumCol r mat)
113
114 -- | Diagonal of the matrix
115 --
116 -- >>> run $ diag (use $ matrix 3 ([1..] :: [Int]))
117 -- Vector (Z :. 3) [1,5,9]
118 diag :: Elt e => Acc (Matrix e) -> Acc (Vector e)
119 diag m = backpermute (indexTail (shape m))
120 (lift1 (\(Z :. x) -> (Z :. x :. (x :: Exp Int))))
121 m
122
123 -- | Divide by the Diagonal of the matrix
124 --
125 -- >>> run $ divByDiag 3 (use $ matrix 3 ([1..] :: [Double]))
126 -- Matrix (Z :. 3 :. 3)
127 -- [ 1.0, 0.4, 0.3333333333333333,
128 -- 4.0, 1.0, 0.6666666666666666,
129 -- 7.0, 1.6, 1.0]
130 divByDiag :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
131 divByDiag d mat = zipWith (/) mat (replicate (constant (Z :. (d :: Int) :. All)) $ diag mat)
132
133 -----------------------------------------------------------------------
134 -- | Filters the matrix with the minimum of maximums
135 --
136 -- >>> run $ matMiniMax $ use $ matrix 3 [1..]
137 -- Matrix (Z :. 3 :. 3)
138 -- [ 0.0, 4.0, 7.0,
139 -- 0.0, 5.0, 8.0,
140 -- 0.0, 6.0, 9.0]
141 matMiniMax :: (Elt a, Ord a, P.Num a) => Acc (Matrix a) -> Acc (Matrix a)
142 matMiniMax m = filterWith' miniMax' (constant 0) m
143 where
144 miniMax' = the $ minimum $ maximum m
145
146
147 -- | Filters the matrix with a constant
148 --
149 -- >>> run $ matFilter 5 $ use $ matrix 3 [1..]
150 -- Matrix (Z :. 3 :. 3)
151 -- [ 0.0, 0.0, 7.0,
152 -- 0.0, 0.0, 8.0,
153 -- 0.0, 6.0, 9.0]
154 filter' :: Double -> Acc (Matrix Double) -> Acc (Matrix Double)
155 filter' t m = filterWith t 0 m
156
157 filterWith :: Double -> Double -> Acc (Matrix Double) -> Acc (Matrix Double)
158 filterWith t v m = map (\x -> ifThenElse (x > (constant t)) x (constant v)) (transpose m)
159
160 filterWith' :: (Elt a, Ord a) => Exp a -> Exp a -> Acc (Matrix a) -> Acc (Matrix a)
161 filterWith' t v m = map (\x -> ifThenElse (x > t) x v) m
162
163
164
165
166 -----------------------------------------------------------------------
167 -- * Metrics of proximity
168 -----------------------------------------------------------------------
169 -- ** Conditional distance
170
171 -- *** Conditional distance (basic)
172
173 -- | Conditional distance (basic version)
174 --
175 -- 2 main metrics are actually implemented in order to compute the
176 -- proximity of two terms: conditional and distributional
177 --
178 -- Conditional metric is an absolute metric which reflects
179 -- interactions of 2 terms in the corpus.
180 measureConditional :: Matrix Int -> Matrix Double
181 --measureConditional m = run (matMiniMax $ matProba (dim m) $ map fromIntegral $ use m)
182 measureConditional m = run $ matProba (dim m)
183 $ map fromIntegral
184 $ use m
185
186
187 -- *** Conditional distance (advanced)
188
189 -- | Conditional distance (advanced version)
190 --
191 -- The conditional metric P(i|j) of 2 terms @i@ and @j@, also called
192 -- "confidence" , is the maximum probability between @i@ and @j@ to see
193 -- @i@ in the same context of @j@ knowing @j@.
194 --
195 -- If N(i) (resp. N(j)) is the number of occurrences of @i@ (resp. @j@)
196 -- in the corpus and _[n_{ij}\] the number of its occurrences we get:
197 --
198 -- \[P_c=max(\frac{n_i}{n_{ij}},\frac{n_j}{n_{ij}} )\]
199 conditional' :: Matrix Int -> (Matrix GenericityInclusion, Matrix SpecificityExclusion)
200 conditional' m = ( run $ ie $ map fromIntegral $ use m
201 , run $ sg $ map fromIntegral $ use m
202 )
203 where
204 ie :: Acc (Matrix Double) -> Acc (Matrix Double)
205 ie mat = map (\x -> x / (2*n-1)) $ zipWith (+) (xs mat) (ys mat)
206 sg :: Acc (Matrix Double) -> Acc (Matrix Double)
207 sg mat = map (\x -> x / (2*n-1)) $ zipWith (-) (xs mat) (ys mat)
208
209 n :: Exp Double
210 n = P.fromIntegral r
211
212 r :: Dim
213 r = dim m
214
215 xs :: Acc (Matrix Double) -> Acc (Matrix Double)
216 xs mat = zipWith (-) (matSumCol r $ matProba r mat) (matProba r mat)
217 ys :: Acc (Matrix Double) -> Acc (Matrix Double)
218 ys mat = zipWith (-) (matSumCol r $ transpose $ matProba r mat) (matProba r mat)
219
220 -----------------------------------------------------------------------
221 -- ** Distributional Distance
222
223 -- | Distributional Distance metric
224 --
225 -- Distributional metric is a relative metric which depends on the
226 -- selected list, it represents structural equivalence of mutual information.
227 --
228 -- The distributional metric P(c) of @i@ and @j@ terms is: \[
229 -- S_{MI} = \frac {\sum_{k \neq i,j ; MI_{ik} >0}^{} \min(MI_{ik},
230 -- MI_{jk})}{\sum_{k \neq i,j ; MI_{ik}>0}^{}} \]
231 --
232 -- Mutual information
233 -- \[S_{MI}({i},{j}) = \log(\frac{C{ij}}{E{ij}})\]
234 --
235 -- Number of cooccurrences of @i@ and @j@ in the same context of text
236 -- \[C{ij}\]
237 --
238 -- The expected value of the cooccurrences @i@ and @j@ (given a map list of size @n@)
239 -- \[E_{ij}^{m} = \frac {S_{i} S_{j}} {N_{m}}\]
240 --
241 -- Total cooccurrences of term @i@ given a map list of size @m@
242 -- \[S_{i} = \sum_{j, j \neq i}^{m} S_{ij}\]
243 --
244 -- Total cooccurrences of terms given a map list of size @m@
245 -- \[N_{m} = \sum_{i,i \neq i}^{m} \sum_{j, j \neq j}^{m} S_{ij}\]
246 --
247 distributional :: Matrix Int -> Matrix Double
248 distributional m = -- run {- $ matMiniMax -}
249 run $ diagNull n
250 $ rIJ n
251 $ filterWith 0 100
252 $ filter' 0
253 $ s_mi
254 $ map fromIntegral
255 {- from Int to Double -}
256 $ use m
257 {- push matrix in Accelerate type -}
258 where
259
260 _ri :: Acc (Matrix Double) -> Acc (Matrix Double)
261 _ri mat = mat1 -- zipWith (/) mat1 mat2
262 where
263 mat1 = matSumCol n $ zipWith min (_myMin mat) (_myMin $ filterWith 0 100 $ diagNull n $ transpose mat)
264 _mat2 = total mat
265
266 _myMin :: Acc (Matrix Double) -> Acc (Matrix Double)
267 _myMin = replicate (constant (Z :. n :. All)) . minimum
268
269
270 -- TODO fix NaN
271 -- Quali TEST: OK
272 s_mi :: Acc (Matrix Double) -> Acc (Matrix Double)
273 s_mi m' = zipWith (\x y -> log (x / y)) (diagNull n m')
274 $ zipWith (/) (crossProduct n m') (total m')
275 -- crossProduct n m'
276
277
278 total :: Acc (Matrix Double) -> Acc (Matrix Double)
279 total = replicate (constant (Z :. n :. n)) . sum . sum
280
281 n :: Dim
282 n = dim m
283
284 -- run $ (identityMatrix (DAA.constant (10::Int)) :: DAA.Acc (DAA.Matrix Int)) Matrix (Z :. 10 :. 10)
285 identityMatrix :: Num a => Exp Int -> Acc (Matrix a)
286 identityMatrix n =
287 let zeros = fill (index2 n n) 0
288 ones = fill (index1 n) 1
289 in
290 permute const zeros (\(unindex1 -> i) -> index2 i i) ones
291
292
293 eyeMatrix :: Num a => Dim -> Acc (Matrix a)
294 eyeMatrix n' =
295 let ones = fill (index2 n n) 1
296 zeros = fill (index1 n) 0
297 n = constant n'
298 in
299 permute const ones (\(unindex1 -> i) -> index2 i i) zeros
300
301 -- | TODO use Lenses
302 data Direction = MatCol (Exp Int) | MatRow (Exp Int) | Diag
303
304 nullOf :: Num a => Dim -> Direction -> Acc (Matrix a)
305 nullOf n' dir =
306 let ones = fill (index2 n n) 1
307 zeros = fill (index2 n n) 0
308 n = constant n'
309 in
310 permute const ones ( lift1 ( \(Z :. (i :: Exp Int) :. (_j:: Exp Int))
311 -> case dir of
312 MatCol m -> (Z :. i :. m)
313 MatRow m -> (Z :. m :. i)
314 Diag -> (Z :. i :. i)
315 )
316 )
317 zeros
318
319 nullOfWithDiag :: Num a => Dim -> Direction -> Acc (Matrix a)
320 nullOfWithDiag n dir = zipWith (*) (nullOf n dir) (nullOf n Diag)
321
322
323 rIJ' :: Matrix Int -> Matrix Double
324 rIJ' m = run $ sumRowMin (dim m) m'
325 where
326 m' = (map fromIntegral $ use m)
327
328 rIJ :: (Elt a, Ord a, P.Fractional (Exp a), P.Num a)
329 => Dim -> Acc (Matrix a) -> Acc (Matrix a)
330 rIJ n m = matMiniMax $ divide a b
331 where
332 a = sumRowMin n m
333 b = sumColMin n m
334
335 divide :: (Elt a, Ord a, P.Fractional (Exp a), P.Num a)
336 => Acc (Matrix a) -> Acc (Matrix a) -> Acc (Matrix a)
337 divide = zipWith divide'
338 where
339 divide' a b = ifThenElse (b > (constant 0))
340 (a / b)
341 (constant 0)
342
343 -- | Nominator
344 sumRowMin :: (Num a, Ord a) => Dim -> Acc (Matrix a) -> Acc (Matrix a)
345 sumRowMin n m = {-trace (P.show $ run m') $-} m'
346 where
347 m' = reshape (shape m) vs
348 vs = P.foldl1 (++)
349 $ P.map (\z -> sumRowMin1 n (constant z) m) [0..n-1]
350
351 sumRowMin1 :: (Num a, Ord a) => Dim -> Exp Int -> Acc (Matrix a) -> Acc (Vector a)
352 sumRowMin1 n x m = trace (P.show (run m,run $ transpose m)) $ m''
353 where
354 m'' = sum $ zipWith min (transpose m) m
355 _m' = zipWith (*) (zipWith (*) (nullOf n (MatCol x)) $ nullOfWithDiag n (MatRow x)) m
356
357
358 -- | Denominator
359 sumColMin :: (Num a, Ord a) => Dim -> Acc (Matrix a) -> Acc (Matrix a)
360 sumColMin n m = reshape (shape m) vs
361 where
362 vs = P.foldl1 (++)
363 $ P.map (\z -> sumColMin1 n (constant z) m) [0..n-1]
364
365
366 sumColMin1 :: (Num a) => Dim -> Exp Int -> Acc (Matrix a) -> Acc (Matrix a)
367 sumColMin1 n x m = zipWith (*) (nullOfWithDiag n (MatCol x)) m
368
369
370
371 {- | WIP fun with indexes
372 selfMatrix :: Num a => Dim -> Acc (Matrix a)
373 selfMatrix n' =
374 let zeros = fill (index2 n n) 0
375 ones = fill (index2 n n) 1
376 n = constant n'
377 in
378 permute const ones ( lift1 ( \(Z :. (i :: Exp Int) :. (_j:: Exp Int))
379 -> -- ifThenElse (i /= j)
380 -- (Z :. i :. j)
381 (Z :. i :. i)
382 )) zeros
383
384 selfMatrix' :: (Elt a, P.Num (Exp a)) => Array DIM2 a -> Matrix a
385 selfMatrix' m' = run $ selfMatrix n
386 where
387 n = dim m'
388 m = use m'
389 -}
390 -------------------------------------------------
391 diagNull :: Num a => Dim -> Acc (Matrix a) -> Acc (Matrix a)
392 diagNull n m = zipWith (*) m eye
393 where
394 eye = eyeMatrix n
395
396 -------------------------------------------------
397 crossProduct :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
398 crossProduct n m = {-trace (P.show (run m',run m'')) $-} zipWith (*) m' m''
399 where
400 m' = cross n m
401 m'' = transpose $ cross n m
402
403
404 crossT :: Matrix Double -> Matrix Double
405 crossT = run . transpose . use
406
407 crossProduct' :: Matrix Double -> Matrix Double
408 crossProduct' m = run $ crossProduct n m'
409 where
410 n = dim m
411 m' = use m
412
413 runWith :: (Arrays c, Elt a1)
414 => (Dim -> Acc (Matrix a1) -> a2 -> Acc c)
415 -> Matrix a1
416 -> a2
417 -> c
418 runWith f m = run . f (dim m) (use m)
419
420 -- | cross
421 cross :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
422 cross n mat = diagNull n (matSumCol n $ diagNull n mat)
423
424 cross' :: Matrix Double -> Matrix Double
425 cross' mat = run $ cross n mat'
426 where
427 mat' = use mat
428 n = dim mat
429
430
431 -----------------------------------------------------------------------
432 -----------------------------------------------------------------------
433 -- * Specificity and Genericity
434
435 {- | Metric Specificity and genericity: select terms
436
437 - let N termes and occurrences of i \[N{i}\]
438
439 - Cooccurrences of i and j \[N{ij}\]
440 - Probability to get i given j : \[P(i|j)=N{ij}/N{j}\]
441
442 - Genericity of i \[Gen(i) = \frac{\sum_{j \neq i,j} P(i|j)}{N-1}\]
443 - Specificity of j \[Spec(i) = \frac{\sum_{j \neq i,j} P(j|i)}{N-1}\]
444
445 - \[Inclusion (i) = Gen(i) + Spec(i)\)
446 - \[GenericityScore = Gen(i)- Spec(i)\]
447
448 - References: Science mapping with asymmetrical paradigmatic proximity
449 Jean-Philippe Cointet (CREA, TSV), David Chavalarias (CREA) (Submitted
450 on 15 Mar 2008), Networks and Heterogeneous Media 3, 2 (2008) 267 - 276,
451 arXiv:0803.2315 [cs.OH]
452 -}
453 type GenericityInclusion = Double
454 type SpecificityExclusion = Double
455
456 data SquareMatrix = SymetricMatrix | NonSymetricMatrix
457 type SymetricMatrix = Matrix
458 type NonSymetricMatrix = Matrix
459
460
461 incExcSpeGen :: Matrix Int -> (Vector GenericityInclusion, Vector SpecificityExclusion)
462 incExcSpeGen m = (run' inclusionExclusion m, run' specificityGenericity m)
463 where
464 run' fun mat = run $ fun $ map fromIntegral $ use mat
465
466 -- | Inclusion (i) = Gen(i)+Spec(i)
467 inclusionExclusion :: Acc (Matrix Double) -> Acc (Vector Double)
468 inclusionExclusion mat = zipWith (+) (pV mat) (pV mat)
469
470 -- | Genericity score = Gen(i)- Spec(i)
471 specificityGenericity :: Acc (Matrix Double) -> Acc (Vector Double)
472 specificityGenericity mat = zipWith (+) (pH mat) (pH mat)
473
474 -- | Gen(i) : 1/(N-1)*Sum(j!=i, P(i|j)) : Genericity of i
475 pV :: Acc (Matrix Double) -> Acc (Vector Double)
476 pV mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ij mat
477
478 -- | Spec(i) : 1/(N-1)*Sum(j!=i, P(j|i)) : Specificity of j
479 pH :: Acc (Matrix Double) -> Acc (Vector Double)
480 pH mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ji mat
481
482 cardN :: Exp Double
483 cardN = constant (P.fromIntegral (dim m) :: Double)
484
485
486 -- | P(i|j) = Nij /N(jj) Probability to get i given j
487 --p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (SymetricMatrix e) -> Acc (Matrix e)
488 p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (Matrix e) -> Acc (Matrix e)
489 p_ij m = zipWith (/) m (n_jj m)
490 where
491 n_jj :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
492 n_jj myMat' = backpermute (shape m)
493 (lift1 ( \(Z :. (_ :: Exp Int) :. (j:: Exp Int))
494 -> (Z :. j :. j)
495 )
496 ) myMat'
497
498 -- | P(j|i) = Nij /N(ii) Probability to get i given j
499 -- to test
500 p_ji :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
501 p_ji = transpose . p_ij
502
503
504 -- | Step to ckeck the result in visual/qualitative tests
505 incExcSpeGen_proba :: Matrix Int -> Matrix Double
506 incExcSpeGen_proba m = run' pro m
507 where
508 run' fun mat = run $ fun $ map fromIntegral $ use mat
509
510 pro mat = p_ji mat
511
512 {-
513 -- | Hypothesis to test maybe later (or not)
514 -- TODO ask accelerate for instances to ease such writtings:
515 p_ :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
516 p_ m = zipWith (/) m (n_ m)
517 where
518 n_ :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
519 n_ m = backpermute (shape m)
520 (lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int))
521 -> (ifThenElse (i < j) (lift (Z :. j :. j)) (lift (Z :. i :. i)) :: Exp DIM2)
522 )
523 ) m
524 -}
525
526 -- * For Tests (to be removed)
527 -- | Test perfermance with this matrix
528 -- TODO : add this in a benchmark folder
529 distriTest :: Int -> Matrix Double
530 distriTest n = distributional (theMatrix n)
531
532 theMatrix :: Int -> Matrix Int
533 theMatrix n = matrix n (dataMatrix n)
534 where
535 dataMatrix :: Int -> [Int]
536 dataMatrix x | (P.==) x 2 = [ 1, 1
537 , 1, 2
538 ]
539
540 | (P.==) x 3 = [ 1, 1, 2
541 , 1, 2, 3
542 , 2, 3, 4
543 ]
544 | (P.==) x 4 = [ 1, 1, 2, 3
545 , 1, 2, 3, 4
546 , 2, 3, 4, 5
547 , 3, 4, 5, 6
548 ]
549 | P.otherwise = P.undefined
550
551 {-
552 theResult :: Int -> Matrix Double
553 theResult n | (P.==) n 2 = let r = 1.6094379124341003 in [ 0, r, r, 0]
554 | P.otherwise = [ 1, 1 ]
555 -}
556
557
558 colMatrix :: Elt e
559 => Int -> [e] -> Acc (Array ((Z :. Int) :. Int) e)
560 colMatrix n ns = replicate (constant (Z :. (n :: Int) :. All)) v
561 where
562 v = use $ vector (P.length ns) ns
563
564 -----------------------------------------------------------------------
565