]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Core/Methods/Graph/MaxClique.hs
merge
[gargantext.git] / src / Gargantext / Core / Methods / Graph / MaxClique.hs
1 {-| Module : Gargantext.Core.Viz.Graph.MaxClique
2 Description : MaxCliques function
3 Copyright : (c) CNRS, 2017-Present
4 License : AGPL + CECILL v3
5 Maintainer : team@gargantext.org
6 Stability : experimental
7 Portability : POSIX
8
9 - Result of the workshop, Pyremiel 2019
10 - First written by Bruno Gaume in Python (see below for details)
11 - Then written by Alexandre Delanoë in Haskell (see below for details)
12
13 # By Bruno Gaume:
14 def fast_maximal_cliques(g):
15
16 def rec_maximal_cliques(g, subv):
17 mc = []
18 if subv == []: # stop condition
19 return [[]]
20 else :
21 for i in range(len(subv)):
22 newsubv = [j for j in subv[i+1:len(subv)]
23 if (j in g.neighbors(subv[i]))]
24 mci = rec_maximal_cliques(g, newsubv)
25 for x in mci:
26 x.append(subv[i])
27 mc.append(x)
28 return mc
29
30 def purge(clust):
31 clustset = [set(x) for x in clust]
32 new_clust = []
33 for i in range(len(clustset)):
34 ok = True
35 for j in range(len(clustset)):
36 if clustset[i].issubset(clustset[j]) and (not (len(clustset[i]) == len(clustset[j])) ):
37 ok = False
38 if ok and (not (clustset[i] in new_clust)):
39 new_clust.append(clustset[i])
40 return [list(x) for x in new_clust]
41
42 # to optimize : rank the vertices on the degrees
43 subv = [(v.index, v.degree()) for v in g.vs()]
44 subv.sort(key = lambda z:z[1])
45 subv = [x for (x, y) in subv]
46 return purge(rec_maximal_cliques(g, subv))
47
48 -}
49
50
51
52 module Gargantext.Core.Methods.Graph.MaxClique
53 where
54
55 import Data.Maybe (catMaybes)
56 import Gargantext.Prelude
57 import Data.Map (Map)
58 import qualified Data.Map as Map
59 import Data.List (sortOn, nub, concat)
60 import Data.Set (Set)
61 import Data.Set (fromList, toList, isSubsetOf)
62 import Data.Graph.Inductive hiding (Graph, neighbors, subgraph, (&))
63 import Gargantext.Core.Viz.Graph.FGL (Graph_Undirected, degree, neighbors, mkGraphUfromEdges)
64 import Gargantext.Core.Viz.Graph.Tools (cooc2graph', Threshold)
65 import Gargantext.Core.Methods.Distances (Distance)
66 import Gargantext.Core.Viz.Graph.Index (createIndices, toIndex)
67
68 type Graph = Graph_Undirected
69 type Neighbor = Node
70
71 -- | getMaxCliques
72 -- TODO chose distance order
73 getMaxCliques :: Ord a => Distance -> Threshold -> Map (a, a) Int -> [[a]]
74 getMaxCliques d t m = map fromIndices $ getMaxCliques' t m'
75 where
76 m' = toIndex to m
77 (to,from) = createIndices m
78 fromIndices = catMaybes . map (\n -> Map.lookup n from)
79
80 getMaxCliques' :: Threshold -> Map (Int, Int) Int -> [[Int]]
81 getMaxCliques' t' n = maxCliques graph
82 where
83 graph = mkGraphUfromEdges (Map.keys n')
84 n' = cooc2graph' d t' n
85
86 maxCliques :: Graph -> [[Node]]
87 maxCliques g = map (\n -> subMaxCliques g (n:ns)) ns & concat & takeMax
88 where
89 ns :: [Node]
90 ns = sortOn (degree g) $ nodes g
91
92 subMaxCliques :: Graph -> [Node] -> [[Node]]
93 subMaxCliques _ [] = [[]]
94 subMaxCliques g' (x:xs) = add x $ subMaxCliques g' ns'
95 where
96 ns' = [n | n <- xs, elem n $ neighborsOut g' x]
97
98 add :: Node -> [[Node]] -> [[Node]]
99 add n [] = [[n]]
100 add n (m:ms) = [n:m] <> add n ms
101 -- | Note, it is same as :
102 -- add n ns = map (\m -> n : m) ns
103 -- -- (but using pattern matching and recursivity)
104 -- -- (map is redefined in fact)
105
106 -- | To be sure self is not in neighbors of self
107 -- (out to exclude the self)
108 neighborsOut :: Graph -> Node -> [Node]
109 neighborsOut g'' n = filter (/= n) $ neighbors g'' n
110
111
112 takeMax :: [[Node]] -> [[Node]]
113 takeMax = map toList
114 . purge
115 . map fromList
116 . sortOn length
117 . nub
118 where
119 purge :: [Set Node] -> [Set Node]
120 purge [] = []
121 purge (x:xs) = x' <> purge xs
122 where
123 x' = if all (== False) (map (isSubsetOf x) xs)
124 then [x]
125 else []
126
127
128 ------------------------------------------------------------------------
129 test_graph :: Graph
130 -- test_graph = mkGraphUfromEdges [(1,1), (2,2), (3,3)]
131 test_graph = mkGraphUfromEdges [(1,2), (3,3)]
132
133 test_graph' :: Graph
134 test_graph' = mkGraphUfromEdges [(1,2), (3,3), (3,2)]
135
136 test_graph'' :: Graph
137 test_graph'' = mkGraphUfromEdges [(1,2), (2,3), (1,3)]
138
139 test_graph''' :: Graph
140 test_graph''' = mkGraphUfromEdges [ (4,1)
141 , (4,2)
142 , (3,1)
143 , (3,2)
144 , (2,1)
145 ]