2 Module : Gargantext.Core.Text.Ngrams
3 Description : Ngrams definition and tools
4 Copyright : (c) CNRS, 2017 - present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 An @n-gram@ is a contiguous sequence of n items from a given sample of
11 text. In Gargantext application the items are words, n is a non negative
14 Using Latin numerical prefixes, an n-gram of size 1 is referred to as a
15 "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size
16 3 is a "trigram". English cardinal numbers are sometimes used, e.g.,
17 "four-gram", "five-gram", and so on.
19 Source: https://en.wikipedia.org/wiki/Ngrams
23 compute occ by node of Tree
24 group occs according groups
31 {-# LANGUAGE TemplateHaskell #-}
32 {-# LANGUAGE ConstrainedClassMethods #-}
34 module Gargantext.Core.Text.Terms
39 import qualified Data.Map as Map
40 import Data.Text (Text)
41 import Data.Traversable
42 import qualified Data.List as List
43 import qualified Data.Set as Set
44 import qualified Data.Text as Text
45 import GHC.Base (String)
46 import GHC.Generics (Generic)
48 import Gargantext.Core
49 import Gargantext.Core.Flow.Types
50 import Gargantext.Core.Text (sentences, HasText(..))
51 import Gargantext.Core.Text.Terms.Eleve (mainEleveWith, Tries, Token, buildTries, toToken)
52 import Gargantext.Core.Text.Terms.Mono (monoTerms)
53 import Gargantext.Core.Text.Terms.Mono.Stem (stem)
54 import Gargantext.Core.Text.Terms.Mono.Token.En (tokenize)
55 import Gargantext.Core.Text.Terms.Multi (multiterms)
56 import Gargantext.Core.Types
57 import Gargantext.Database.Prelude (Cmd)
58 import Gargantext.Database.Schema.Ngrams (Ngrams(..), NgramsType(..), ngramsTerms, text2ngrams)
59 import Gargantext.Prelude
63 = Mono { _tt_lang :: !lang }
64 | Multi { _tt_lang :: !lang }
65 | MonoMulti { _tt_lang :: !lang }
66 | Unsupervised { _tt_lang :: !lang
67 , _tt_windowSize :: !Int
68 , _tt_ngramsSize :: !Int
69 , _tt_model :: !(Maybe (Tries Token ()))
74 --group :: [Text] -> [Text]
78 -- map (filter (\t -> not . elem t)) $
79 ------------------------------------------------------------------------
80 -- | Sugar to extract terms from text (hiddeng mapM from end user).
81 --extractTerms :: Traversable t => TermType Lang -> t Text -> IO (t [Terms])
82 extractTerms :: TermType Lang -> [Text] -> IO [[Terms]]
84 extractTerms (Unsupervised l n s m) xs = mapM (terms (Unsupervised l n s (Just m'))) xs
88 Nothing -> newTries n (Text.intercalate " " xs)
90 extractTerms termTypeLang xs = mapM (terms termTypeLang) xs
93 ------------------------------------------------------------------------
98 withLang (Unsupervised l n s m) ns = Unsupervised l n s m'
101 Nothing -> -- trace ("buildTries here" :: String)
102 Just $ buildTries n ( fmap toToken
104 $ Text.intercalate " . "
111 ------------------------------------------------------------------------
112 class ExtractNgramsT h
114 extractNgramsT :: HasText h
117 -> Cmd err (Map Ngrams (Map NgramsType Int))
119 filterNgramsT :: Int -> Map Ngrams (Map NgramsType Int)
120 -> Map Ngrams (Map NgramsType Int)
121 filterNgramsT s ms = Map.fromList $ map filter' $ Map.toList ms
124 | Text.length (ng ^. ngramsTerms) < s = (ng,y)
125 | otherwise = (text2ngrams (Text.take s (ng ^. ngramsTerms)), y)
128 -- =======================================================
132 -- Multi : multi terms
133 -- MonoMulti : mono and multi
134 -- TODO : multi terms should exclude mono (intersection is not empty yet)
135 terms :: TermType Lang -> Text -> IO [Terms]
136 terms (Mono lang) txt = pure $ monoTerms lang txt
137 terms (Multi lang) txt = multiterms lang txt
138 terms (MonoMulti lang) txt = terms (Multi lang) txt
139 terms (Unsupervised lang n s m) txt = termsUnsupervised (Unsupervised lang n s (Just m')) txt
141 m' = maybe (newTries n txt) identity m
142 -- terms (WithList list) txt = pure . concat $ extractTermsWithList list txt
145 ------------------------------------------------------------------------
147 text2term :: Lang -> [Text] -> Terms
148 text2term _ [] = Terms [] Set.empty
149 text2term lang txt = Terms txt (Set.fromList $ map (stem lang) txt)
151 isPunctuation :: Text -> Bool
152 isPunctuation x = List.elem x $ (Text.pack . pure)
153 <$> ("!?(),;." :: String)
155 -- | Unsupervised ngrams extraction
156 -- language agnostic extraction
158 -- TODO: newtype BlockText
160 type WindowSize = Int
161 type MinNgramSize = Int
163 termsUnsupervised :: TermType Lang -> Text -> IO [Terms]
164 termsUnsupervised (Unsupervised l n s m) =
168 . (List.filter (\l' -> List.length l' >= s))
170 . mainEleveWith (maybe (panic "no model") identity m) n
172 termsUnsupervised _ = undefined
174 newTries :: Int -> Text -> Tries Token ()
175 newTries n t = buildTries n (fmap toToken $ uniText t)
177 -- | TODO removing long terms > 24
178 uniText :: Text -> [[Text]]
179 uniText = map (List.filter (not . isPunctuation))
181 . sentences -- TODO get sentences according to lang