2 Module : Gargantext.Core.Viz.Graph.Tools
3 Description : Tools to build Graph
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
12 {-# LANGUAGE BangPatterns, ScopedTypeVariables #-}
14 module Gargantext.Core.Viz.Graph.Tools
18 import Data.HashMap.Strict (HashMap)
19 import Data.Map.Strict (Map)
20 import Data.Maybe (fromMaybe)
21 import Data.Swagger hiding (items)
22 import GHC.Float (sin, cos)
23 import GHC.Generics (Generic)
24 import Gargantext.API.Ngrams.Types (NgramsTerm(..))
25 import Gargantext.Core.Methods.Similarities (Similarity(..), measure)
26 -- import Gargantext.Core.Methods.Similarities.Conditional (conditional)
27 import Gargantext.Core.Statistics
28 import Gargantext.Core.Viz.Graph.Bridgeness (bridgeness, Bridgeness(..), Partitions, nodeId2comId, {-recursiveClustering,-} recursiveClustering', setNodes2clusterNodes)
29 import Gargantext.Core.Viz.Graph.Index (createIndices, toIndex, map2mat, mat2map, Index, MatrixShape(..))
30 import Gargantext.Core.Viz.Graph.Tools.IGraph (mkGraphUfromEdges, spinglass, spinglass')
31 import Gargantext.Core.Viz.Graph.Tools.Infomap (infomap)
32 import Gargantext.Core.Viz.Graph.Types (Attributes(..), Edge(..), Graph(..), MultiPartite(..), Node(..), Partite(..), Strength(..))
33 import Gargantext.Database.Schema.Ngrams (NgramsType(..))
34 import Gargantext.Core.Viz.Graph.Utils (edgesFilter, nodesFilter)
35 import Gargantext.Prelude
36 import Graph.Types (ClusterNode)
37 import IGraph.Random -- (Gen(..))
38 import Test.QuickCheck (elements)
39 import Test.QuickCheck.Arbitrary
40 import qualified Data.HashMap.Strict as HashMap
41 import qualified Data.List as List
42 import qualified Data.Map.Strict as Map
43 import qualified Data.Set as Set
44 import qualified Data.HashSet as HashSet
45 import qualified Data.Text as Text
46 import qualified Data.Vector.Storable as Vec
47 import qualified Graph.BAC.ProxemyOptim as BAC
48 import qualified IGraph as Igraph
49 import qualified IGraph.Algorithms.Layout as Layout
51 data PartitionMethod = Spinglass | Confluence | Infomap
52 deriving (Generic, Eq, Ord, Enum, Bounded, Show)
53 instance FromJSON PartitionMethod
54 instance ToJSON PartitionMethod
55 instance ToSchema PartitionMethod
56 instance Arbitrary PartitionMethod where
57 arbitrary = elements [ minBound .. maxBound ]
59 data BridgenessMethod = BridgenessMethod_Basic | BridgenessMethod_Advanced
60 deriving (Generic, Eq, Ord, Enum, Bounded, Show)
61 instance FromJSON BridgenessMethod
62 instance ToJSON BridgenessMethod
63 instance ToSchema BridgenessMethod
64 instance Arbitrary BridgenessMethod where
65 arbitrary = elements [ minBound .. maxBound ]
68 -------------------------------------------------------------
69 defaultClustering :: Map (Int, Int) Double -> IO [ClusterNode]
70 -- defaultClustering x = pure $ BAC.defaultClustering x
71 defaultClustering x = spinglass 1 x
73 -------------------------------------------------------------
74 type Threshold = Double
77 cooc2graph' :: Ord t => Similarity
80 -> Map (Index, Index) Double
81 cooc2graph' distance threshold myCooc
82 = Map.filter (> threshold)
86 Conditional -> map2mat Triangle 0 tiSize
87 Distributional -> map2mat Square 0 tiSize
88 $ Map.filter (> 1) myCooc'
91 (ti, _) = createIndices myCooc
93 myCooc' = toIndex ti myCooc
97 -- coocurrences graph computation
98 cooc2graphWith :: PartitionMethod
104 -> HashMap (NgramsTerm, NgramsTerm) Int
106 cooc2graphWith Spinglass = cooc2graphWith' (spinglass 1)
107 cooc2graphWith Confluence= cooc2graphWith' (\x -> pure $ BAC.defaultClustering x)
108 cooc2graphWith Infomap = cooc2graphWith' (infomap "-v -N2")
109 --cooc2graphWith Infomap = cooc2graphWith' (infomap "--silent --two-level -N2")
110 -- TODO: change these options, or make them configurable in UI?
112 cooc2graphWith' :: Partitions
118 -> HashMap (NgramsTerm, NgramsTerm) Int
120 cooc2graphWith' _doPartitions _bridgenessMethod multi similarity threshold strength myCooc = do
121 let (distanceMap, diag, ti) = doSimilarityMap similarity threshold strength myCooc
122 distanceMap `seq` diag `seq` ti `seq` return ()
124 partitions <- if (Map.size distanceMap > 0)
125 then recursiveClustering' (spinglass' 1) distanceMap
126 else panic $ Text.unlines [ "[Gargantext.C.V.Graph.Tools] Similarity Matrix is empty"
127 , "Maybe you should add more Map Terms in your list"
130 length partitions `seq` return ()
133 !confluence' = BAC.computeConfluences 3 (Map.keys distanceMap) True
134 !bridgeness' = bridgeness (Bridgeness_Recursive partitions 1.0 similarity) distanceMap
136 pure $ data2graph multi ti diag bridgeness' confluence' (setNodes2clusterNodes $ List.concat partitions)
139 cooc2graphWith' _doPartitions _bridgenessMethod multi similarity@Distributional threshold strength myCooc = do
140 let (distanceMap, diag, ti) = doSimilarityMap similarity threshold strength myCooc
141 distanceMap `seq` diag `seq` ti `seq` return ()
143 partitions <- if (Map.size distanceMap > 0)
144 then recursiveClustering (spinglass 1) distanceMap
145 else panic $ Text.unlines [ "[Gargantext.C.V.Graph.Tools] Similarity Matrix is empty"
146 , "Maybe you should add more Map Terms in your list"
149 length partitions `seq` return ()
152 !confluence' = BAC.computeConfluences 3 (Map.keys distanceMap) True
153 !bridgeness' = bridgeness (Bridgeness_Basic partitions 1.0) distanceMap
155 pure $ data2graph multi ti diag bridgeness' confluence' partitions
162 doSimilarityMap :: Similarity
165 -> HashMap (NgramsTerm, NgramsTerm) Int
166 -> ( Map (Int,Int) Double
167 , Map (Index, Index) Int
168 , Map NgramsTerm Index
171 doSimilarityMap Conditional threshold strength myCooc = (distanceMap, toIndex ti myCooc', ti)
173 myCooc' = Map.fromList $ HashMap.toList myCooc
175 (_diag, theMatrix) = Map.partitionWithKey (\(x,y) _ -> x == y)
177 $ HashMap.toList myCooc
179 (ti, _it) = createIndices theMatrix
182 similarities = (\m -> m `seq` m)
183 $ (\m -> m `seq` measure Conditional m)
184 $ (\m -> m `seq` map2mat Square 0 tiSize m)
185 $ theMatrix `seq` toIndex ti theMatrix
187 links = round (let n :: Double = fromIntegral (Map.size ti) in 10 * n * (log n)^(2::Int))
188 distanceMap = Map.fromList
190 $ (if strength == Weak then List.reverse else identity)
193 $ Map.filter (> threshold)
194 -- $ conditional myCooc
195 $ similarities `seq` mat2map similarities
197 doSimilarityMap Distributional threshold strength myCooc = (distanceMap, toIndex ti diag, ti)
200 (diag, theMatrix) = Map.partitionWithKey (\(x,y) _ -> x == y)
202 $ HashMap.toList myCooc
204 (ti, _it) = createIndices theMatrix
207 similarities = (\m -> m `seq` m)
208 $ (\m -> m `seq` measure Distributional m)
209 $ (\m -> m `seq` map2mat Square 0 tiSize m)
210 $ theMatrix `seq` toIndex ti theMatrix
212 links = round (let n :: Double = fromIntegral tiSize in n * (log n)^(2::Int))
214 distanceMap = Map.fromList
216 $ (if strength == Weak then List.reverse else identity)
220 $ (\m -> m `seq` Map.filter (> threshold) m)
221 $ similarities `seq` mat2map similarities
223 ----------------------------------------------------------
224 -- | From data to Graph
225 type Occurrences = Int
227 nodeTypeWith :: MultiPartite -> NgramsTerm -> NgramsType
228 nodeTypeWith (MultiPartite (Partite s1 t1) (Partite _s2 t2)) t =
229 if HashSet.member t s1
233 data2graph :: MultiPartite
234 -> Map NgramsTerm Int
235 -> Map (Int, Int) Occurrences
236 -> Map (Int, Int) Double
237 -> Map (Int, Int) Double
240 data2graph multi labels' occurences bridge conf partitions =
241 Graph { _graph_nodes = nodes
242 , _graph_edges = edges
243 , _graph_metadata = Nothing
248 nodes = map (setCoord ForceAtlas labels bridge)
249 [ (n, Node { node_size = maybe 0 identity (Map.lookup (n,n) occurences)
250 , node_type = nodeTypeWith multi label
251 , node_id = (cs . show) n
252 , node_label = unNgramsTerm label
256 Attributes { clust_default = fromMaybe 0
257 (Map.lookup n community_id_by_node_id)
262 | (label, n) <- labels
263 , Set.member n toKeep
266 (bridge', toKeep) = nodesFilter (\v -> v > 1) bridge
268 edges = [ Edge { edge_source = cs (show s)
269 , edge_hidden = Nothing
270 , edge_target = cs (show t)
271 , edge_weight = weight
272 , edge_confluence = maybe 0 identity $ Map.lookup (s,t) conf
273 , edge_id = cs (show i)
275 | (i, ((s,t), weight)) <- zip ([0..]::[Integer] ) $ Map.toList bridge'
280 community_id_by_node_id = Map.fromList
281 $ map nodeId2comId partitions
283 labels = Map.toList labels'
286 ------------------------------------------------------------------------
288 data Layout = KamadaKawai | ACP | ForceAtlas
291 setCoord' :: (Int -> (Double, Double)) -> (Int, Node) -> Node
292 setCoord' f (i,n) = n { node_x_coord = x, node_y_coord = y }
298 setCoord :: Ord a => Layout -> [(a, Int)] -> Map (Int, Int) Double -> (Int, Node) -> Node
299 setCoord l labels m (n,node) = node { node_x_coord = x
303 (x,y) = getCoord l labels m n
309 -> Map (Int, Int) Double
312 getCoord KamadaKawai _ _m _n = undefined -- layout m n
314 getCoord ForceAtlas _ _ n = (sin d, cos d)
318 getCoord ACP labels m n = to2d $ maybe (panic "Graph.Tools no coordinate") identity
320 $ pcaReduceTo (Dimension 2)
323 to2d :: Vec.Vector Double -> (Double, Double)
326 ds = take 2 $ Vec.toList v
330 mapArray :: Ord a => [(a, Int)] -> Map (Int, Int) Double -> Map Int (Vec.Vector Double)
331 mapArray items m' = Map.fromList [ toVec n' ns m' | n' <- ns ]
335 toVec :: Int -> [Int] -> Map (Int,Int) Double -> (Int, Vec.Vector Double)
336 toVec n' ns' m'' = (n', Vec.fromList $ map (\n'' -> maybe 0 identity $ Map.lookup (n',n'') m'') ns')
337 ------------------------------------------------------------------------
339 -- | KamadaKawai Layout
340 -- TODO TEST: check labels, nodeId and coordinates
341 layout :: Map (Int, Int) Double -> Int -> Gen -> (Double, Double)
342 layout m n gen = maybe (panic "") identity $ Map.lookup n $ coord
344 coord :: (Map Int (Double,Double))
345 coord = Map.fromList $ List.zip (Igraph.nodes g) $ (Layout.layout g p gen)
346 --p = Layout.defaultLGL
347 p = Layout.kamadaKawai
348 g = mkGraphUfromEdges $ map fst $ List.filter (\e -> snd e > 0) $ Map.toList m
350 -----------------------------------------------------------------------------
352 cooc2graph'' :: Ord t => Similarity
355 -> Map (Index, Index) Double
356 cooc2graph'' distance threshold myCooc = neighbourMap
358 (ti, _) = createIndices myCooc
359 myCooc' = toIndex ti myCooc
360 matCooc = map2mat Triangle 0 (Map.size ti) $ Map.filter (> 1) myCooc'
361 distanceMat = measure distance matCooc
362 neighbourMap = filterByNeighbours threshold
363 $ mat2map distanceMat
366 filterByNeighbours :: Double -> Map (Index, Index) Double -> Map (Index, Index) Double
367 filterByNeighbours threshold distanceMap = filteredMap
370 indexes = List.nub $ List.concat $ map (\(idx,idx') -> [idx,idx'] ) $ Map.keys distanceMap
371 filteredMap :: Map (Index, Index) Double
372 filteredMap = Map.fromList
375 let selected = List.reverse
379 $ Map.filterWithKey (\(from,_) _ -> idx == from) distanceMap
380 in List.take (round threshold) selected