2 Module : Gargantext.Viz.Phylo.TemporalMatching
3 Description : Module dedicated to the adaptative temporal matching of a Phylo.
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
11 {-# LANGUAGE NoImplicitPrelude #-}
12 {-# LANGUAGE FlexibleContexts #-}
13 {-# LANGUAGE OverloadedStrings #-}
14 {-# LANGUAGE MultiParamTypeClasses #-}
16 module Gargantext.Viz.Phylo.TemporalMatching where
18 import Data.List (concat, splitAt, tail, sortOn, (++), intersect, null, inits, groupBy, scanl, nub, union, dropWhile, partition, or)
19 import Data.Map (Map, fromList, elems, restrictKeys, unionWith, intersectionWith, findWithDefault, keys, (!), filterWithKey)
21 import Gargantext.Prelude
22 import Gargantext.Viz.AdaptativePhylo
23 import Gargantext.Viz.Phylo.PhyloTools
25 -- import Prelude (logBase)
26 import Control.Lens hiding (Level)
27 import Control.Parallel.Strategies (parList, rdeepseq, using)
28 import Debug.Trace (trace)
30 import qualified Data.Set as Set
38 -- | Process the inverse sumLog
39 sumInvLog :: Double -> [Double] -> Double
40 sumInvLog s l = foldl (\mem x -> mem + (1 / log (s + x))) 0 l
43 -- | Process the sumLog
44 sumLog :: Double -> [Double] -> Double
45 sumLog s l = foldl (\mem x -> mem + log (s + x)) 0 l
48 -- | To compute a jaccard similarity between two lists
49 jaccard :: [Int] -> [Int] -> Double
50 jaccard inter' union' = ((fromIntegral . length) $ inter') / ((fromIntegral . length) $ union')
53 -- | To process a WeighedLogJaccard distance between to coocurency matrix
54 weightedLogJaccard :: Double -> Double -> Cooc -> Cooc -> [Int] -> [Int] -> Double
55 weightedLogJaccard sens docs cooc cooc' ngrams ngrams'
56 | null ngramsInter = 0
57 | ngramsInter == ngramsUnion = 1
58 | sens == 0 = jaccard ngramsInter ngramsUnion
59 | sens > 0 = (sumInvLog sens coocInter) / (sumInvLog sens coocUnion)
60 | otherwise = (sumLog sens coocInter) / (sumLog sens coocUnion)
62 --------------------------------------
64 ngramsInter = intersect ngrams ngrams'
65 --------------------------------------
67 ngramsUnion = union ngrams ngrams'
68 --------------------------------------
70 coocInter = elems $ map (/docs) $ filterWithKey (\(k,k') _ -> k == k') $ intersectionWith (+) cooc cooc'
71 -- coocInter = elems $ map (/docs) $ intersectionWith (+) cooc cooc'
72 --------------------------------------
74 coocUnion = elems $ map (/docs) $ filterWithKey (\(k,k') _ -> k == k') $ unionWith (+) cooc cooc'
75 --------------------------------------
78 -- | To choose a proximity function
79 pickProximity :: Proximity -> Double -> Cooc -> Cooc -> [Int] -> [Int] -> Double
80 pickProximity proximity docs cooc cooc' ngrams ngrams' = case proximity of
81 WeightedLogJaccard sens _ _ -> weightedLogJaccard sens docs cooc cooc' ngrams ngrams'
85 -- | To process the proximity between a current group and a pair of targets group
86 toProximity :: Map Date Double -> Proximity -> PhyloGroup -> PhyloGroup -> PhyloGroup -> Double
87 toProximity docs proximity ego target target' =
88 let docs' = sum $ elems docs
89 cooc = if target == target'
90 then (target ^. phylo_groupCooc)
91 else sumCooc (target ^. phylo_groupCooc) (target' ^. phylo_groupCooc)
92 ngrams = if target == target'
93 then (target ^. phylo_groupNgrams)
94 else union (target ^. phylo_groupNgrams) (target' ^. phylo_groupNgrams)
95 in pickProximity proximity docs' (ego ^. phylo_groupCooc) cooc (ego ^. phylo_groupNgrams) ngrams
98 ------------------------
99 -- | Local Matching | --
100 ------------------------
102 toLastPeriod :: Filiation -> [PhyloPeriodId] -> PhyloPeriodId
103 toLastPeriod fil periods = case fil of
104 ToParents -> head' "toLastPeriod" (sortOn fst periods)
105 ToChilds -> last' "toLastPeriod" (sortOn fst periods)
108 toLazyPairs :: [Pointer] -> Filiation -> Double -> Proximity -> PhyloPeriodId -> [(PhyloGroup,PhyloGroup)] -> [(PhyloGroup,PhyloGroup)]
109 toLazyPairs pointers fil thr prox prd pairs =
110 if null pointers then pairs
111 else let rest = filterPointers prox thr pointers
113 then let prd' = toLastPeriod fil (map (fst . fst . fst) pointers)
116 else filter (\(g,g') ->
118 ToParents -> ((fst $ g ^. phylo_groupPeriod) < (fst prd'))
119 || ((fst $ g' ^. phylo_groupPeriod) < (fst prd'))
120 ToChilds -> ((fst $ g ^. phylo_groupPeriod) > (fst prd'))
121 || ((fst $ g' ^. phylo_groupPeriod) > (fst prd'))) pairs
125 -- | Find pairs of valuable candidates to be matched
126 makePairs' :: PhyloGroup -> [PhyloGroup] -> [PhyloPeriodId] -> [Pointer] -> Filiation -> Double -> Proximity -> Map Date Double -> [(PhyloGroup,PhyloGroup)]
127 makePairs' ego candidates periods pointers fil thr prox docs =
130 False -> toLazyPairs pointers fil thr prox lastPrd
131 -- | at least on of the pair candidates should be from the last added period
132 $ filter (\(g,g') -> ((g ^. phylo_groupPeriod) == lastPrd)
133 || ((g' ^. phylo_groupPeriod) == lastPrd))
135 $ filter (\g -> (g ^. phylo_groupPeriod == lastPrd)
136 || ((toProximity docs prox ego ego g) >= thr)) candidates
138 lastPrd :: PhyloPeriodId
139 lastPrd = toLastPeriod fil periods
142 filterPointers :: Proximity -> Double -> [Pointer] -> [Pointer]
143 filterPointers proxi thr pts = filter (\(_,w) -> filterProximity proxi thr w) pts
146 phyloGroupMatching :: [[PhyloGroup]] -> Filiation -> Proximity -> Map Date Double -> Double -> PhyloGroup -> PhyloGroup
147 phyloGroupMatching candidates fil proxi docs thr ego =
148 case null nextPointers of
149 -- | let's find new pointers
150 True -> if null $ filterPointers proxi thr $ getPeriodPointers fil ego
151 then addPointers ego fil TemporalPointer []
152 -- | or keep the old ones
153 else addPointers ego fil TemporalPointer
154 $ filterPointers proxi thr $ getPeriodPointers fil ego
155 False -> addPointers ego fil TemporalPointer
156 $ head' "phyloGroupMatching"
157 -- | Keep only the best set of pointers grouped by proximity
158 $ groupBy (\pt pt' -> snd pt == snd pt')
159 $ reverse $ sortOn snd $ head' "pointers"
161 -- | Find the first time frame where at leats one pointer satisfies the proximity threshold
163 nextPointers :: [[Pointer]]
164 nextPointers = take 1
166 -- | for each time frame, process the proximity on relevant pairs of targeted groups
167 $ scanl (\acc groups ->
168 let periods = nub $ map _phylo_groupPeriod $ concat groups
169 docs' = (filterDocs docs ([ego ^. phylo_groupPeriod] ++ periods))
170 pairs = makePairs' ego (concat groups) periods (getPeriodPointers fil ego) fil thr proxi docs
171 in acc ++ ( filterPointers proxi thr
174 -- | process the proximity between the current group and a pair of candidates
175 let proximity = toProximity docs' proxi ego c c'
177 then [(getGroupId c,proximity)]
178 else [(getGroupId c,proximity),(getGroupId c',proximity)] ) pairs )) []
179 $ inits candidates -- | groups from [[1900],[1900,1901],[1900,1901,1902],...]
182 filterDocs :: Map Date Double -> [PhyloPeriodId] -> Map Date Double
183 filterDocs d pds = restrictKeys d $ periodsToYears pds
186 -----------------------------
187 -- | Matching Processing | --
188 -----------------------------
191 getNextPeriods :: Filiation -> Int -> PhyloPeriodId -> [PhyloPeriodId] -> [PhyloPeriodId]
192 getNextPeriods fil max' pId pIds =
194 ToChilds -> take max' $ (tail . snd) $ splitAt (elemIndex' pId pIds) pIds
195 ToParents -> take max' $ (reverse . fst) $ splitAt (elemIndex' pId pIds) pIds
198 getCandidates :: Filiation -> PhyloGroup -> [[PhyloGroup]] -> [[PhyloGroup]]
199 getCandidates fil ego targets =
202 ToParents -> reverse targets'
204 targets' :: [[PhyloGroup]]
207 filter (\g' -> (not . null) $ intersect (ego ^. phylo_groupNgrams) (g' ^. phylo_groupNgrams)
211 phyloBranchMatching :: Int -> [PhyloPeriodId] -> Proximity -> Double -> Map Date Double -> [PhyloGroup] -> [PhyloGroup]
212 phyloBranchMatching frame periods proximity thr docs branch = traceBranchMatching proximity thr
214 $ groupByField _phylo_groupPeriod branch
216 --------------------------------------
217 matchByPeriods :: Map PhyloPeriodId [PhyloGroup] -> [PhyloGroup]
218 matchByPeriods branch' = foldl' (\acc prd ->
219 let periodsPar = getNextPeriods ToParents frame prd periods
220 periodsChi = getNextPeriods ToChilds frame prd periods
221 candidatesPar = map (\prd' -> findWithDefault [] prd' branch') periodsPar
222 candidatesChi = map (\prd' -> findWithDefault [] prd' branch') periodsChi
223 docsPar = filterDocs docs ([prd] ++ periodsPar)
224 docsChi = filterDocs docs ([prd] ++ periodsChi)
225 egos = map (\ego -> phyloGroupMatching (getCandidates ToParents ego candidatesPar) ToParents proximity docsPar thr
226 $ phyloGroupMatching (getCandidates ToChilds ego candidatesChi) ToChilds proximity docsChi thr ego)
227 $ findWithDefault [] prd branch'
228 egos' = egos `using` parList rdeepseq
229 in acc ++ egos' ) [] periods
232 -----------------------
233 -- | Phylo Quality | --
234 -----------------------
237 relevantBranches :: Int -> [[PhyloGroup]] -> [[PhyloGroup]]
238 relevantBranches term branches =
239 filter (\groups -> (any (\group -> elem term $ group ^. phylo_groupNgrams) groups)) branches
241 fScore :: Double -> Int -> [PhyloGroup] -> [[PhyloGroup]] -> Double
242 fScore beta i bk bks =
243 let recall = ( (fromIntegral $ length $ filter (\g -> elem i $ g ^. phylo_groupNgrams) bk)
244 / (fromIntegral $ length $ filter (\g -> elem i $ g ^. phylo_groupNgrams) $ concat bks))
245 accuracy = ( (fromIntegral $ length $ filter (\g -> elem i $ g ^. phylo_groupNgrams) bk)
246 / (fromIntegral $ length bk))
247 in ((1 + beta ** 2) * accuracy * recall)
248 / (((beta ** 2) * accuracy + recall))
251 wk :: [PhyloGroup] -> Double
252 wk bk = fromIntegral $ length bk
255 toPhyloQuality' :: Double -> Map Int Double -> [[PhyloGroup]] -> Double
256 toPhyloQuality' beta freq branches =
261 let bks = relevantBranches i branches
262 in (freq ! i) * (sum $ map (\bk -> ((wk bk) / (sum $ map wk bks)) * (fScore beta i bk bks)) bks))
266 -----------------------------
267 -- | Adaptative Matching | --
268 -----------------------------
271 groupsToBranches :: Map PhyloGroupId PhyloGroup -> [[PhyloGroup]]
272 groupsToBranches groups =
273 -- | run the related component algorithm
274 let egos = groupBy (\gs gs' -> (fst $ fst $ head' "egos" gs) == (fst $ fst $ head' "egos" gs'))
275 $ sortOn (\gs -> fst $ fst $ head' "egos" gs)
276 $ map (\group -> [getGroupId group]
277 ++ (map fst $ group ^. phylo_groupPeriodParents)
278 ++ (map fst $ group ^. phylo_groupPeriodChilds) ) $ elems groups
279 -- | first find the related components by inside each ego's period
280 graph' = map relatedComponents egos
281 -- | then run it for the all the periods
283 $ relatedComponents $ concat (graph' `using` parList rdeepseq)
284 -- | update each group's branch id
285 in map (\(bId,ids) ->
286 let groups' = map (\group -> group & phylo_groupBranchId %~ (\(lvl,lst) -> (lvl,lst ++ [bId])))
287 $ elems $ restrictKeys groups (Set.fromList ids)
288 in groups' `using` parList rdeepseq ) graph
291 reduceFrequency :: Map Int Double -> [[PhyloGroup]] -> Map Int Double
292 reduceFrequency frequency branches =
293 restrictKeys frequency (Set.fromList $ (nub . concat) $ map _phylo_groupNgrams $ concat branches)
296 seqMatching :: Proximity -> Double -> Map Int Double -> Int -> Double -> Int -> Map Date Double -> [PhyloPeriodId] -> [([PhyloGroup],Bool)] -> ([PhyloGroup],Bool) -> [([PhyloGroup],Bool)] -> [([PhyloGroup],Bool)]
297 seqMatching proximity beta frequency minBranch egoThr frame docs periods done ego rest =
298 -- | 1) keep or not the new division of ego
299 let done' = done ++ (if snd ego
300 then (if ((null (fst ego')) || (quality > quality'))
301 then trace (" ✗ F(β) = " <> show(quality) <> " (vs) " <> show(quality')
302 <> " | " <> show(length $ fst ego) <> " groups : "
303 <> " |✓ " <> show(length $ fst ego') <> show(map length $ fst ego')
304 <> " |✗ " <> show(length $ snd ego') <> "[" <> show(length $ concat $ snd ego') <> "]")
306 else trace (" ✓ F(β) = " <> show(quality) <> " (vs) " <> show(quality')
307 <> " | " <> show(length $ fst ego) <> " groups : "
308 <> " |✓ " <> show(length $ fst ego') <> show(map length $ fst ego')
309 <> " |✗ " <> show(length $ snd ego') <> "[" <> show(length $ concat $ snd ego') <> "]")
310 $ ((map (\e -> (e,True)) (fst ego')) ++ (map (\e -> (e,False)) (snd ego'))))
313 -- | 2) if there is no more branches in rest then return else continue
316 else seqMatching proximity beta frequency minBranch egoThr frame docs periods
317 done' (head' "seqMatching" rest) (tail' "seqMatching" rest)
319 --------------------------------------
321 quality = toPhyloQuality' beta frequency ((map fst done) ++ [fst ego] ++ (map fst rest))
322 --------------------------------------
323 ego' :: ([[PhyloGroup]],[[PhyloGroup]])
325 let branches = groupsToBranches $ fromList $ map (\g -> (getGroupId g, g))
326 $ phyloBranchMatching frame periods proximity egoThr docs (fst ego)
327 branches' = branches `using` parList rdeepseq
328 in partition (\b -> (length $ nub $ map _phylo_groupPeriod b) >= minBranch) branches'
329 --------------------------------------
331 quality' = toPhyloQuality' beta frequency
332 ((map fst done) ++ (fst ego') ++ (snd ego') ++ (map fst rest))
335 recursiveMatching' :: Proximity -> Double -> Int -> Map Int Double -> Double -> Int -> [PhyloPeriodId] -> Map Date Double -> [([PhyloGroup],Bool)] -> [([PhyloGroup],Bool)]
336 recursiveMatching' proximity beta minBranch frequency egoThr frame periods docs branches =
337 if (egoThr >= 1) || ((not . or) $ map snd branches)
340 let branches' = seqMatching proximity beta frequency minBranch egoThr frame docs periods
341 [] (head' "recursiveMatching" branches) (tail' "recursiveMatching" branches)
342 frequency' = reduceFrequency frequency (map fst branches')
343 in recursiveMatching' proximity beta minBranch frequency' (egoThr + (getThresholdStep proximity)) frame periods docs branches'
346 temporalMatching :: Phylo -> Phylo
347 temporalMatching phylo = updatePhyloGroups 1
348 (fromList $ map (\g -> (getGroupId g,g)) $ traceMatchEnd $ concat branches)
351 -- | 2) init the recursiveMatching
352 branches :: [[PhyloGroup]]
354 $ recursiveMatching' (phyloProximity $ getConfig phylo)
355 (_qua_granularity $ phyloQuality $ getConfig phylo)
356 (_qua_minBranch $ phyloQuality $ getConfig phylo)
357 (phylo ^. phylo_termFreq)
358 (getThresholdInit $ phyloProximity $ getConfig phylo)
359 (getTimeFrame $ timeUnit $ getConfig phylo)
361 (phylo ^. phylo_timeDocs)
363 -- | 1) for each group process an initial temporal Matching
364 groups :: [PhyloGroup]
365 groups = phyloBranchMatching (getTimeFrame $ timeUnit $ getConfig phylo) (getPeriodIds phylo)
366 (phyloProximity $ getConfig phylo) (getThresholdInit $ phyloProximity $ getConfig phylo)
367 (phylo ^. phylo_timeDocs)
368 (traceTemporalMatching $ getGroupsFromLevel 1 phylo)