]> Git — Sourcephile - gargantext.git/blob - src/Gargantext/Text.hs
[FACTORING] G.Text.Terms.
[gargantext.git] / src / Gargantext / Text.hs
1 {-|
2 Module : Gargantext.Text
3 Description : Ngrams tools
4 Copyright : (c) CNRS, 2018
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
8 Portability : POSIX
9
10 Text gathers terms in unit of contexts.
11
12 -}
13
14 {-# LANGUAGE NoImplicitPrelude #-}
15 {-# LANGUAGE OverloadedStrings #-}
16 {-# LANGUAGE MultiParamTypeClasses #-}
17
18 module Gargantext.Text
19 where
20
21 import Data.Text (Text, split)
22 import Gargantext.Prelude hiding (filter)
23 import NLP.FullStop (segment)
24 import qualified Data.Text as DT
25
26 -----------------------------------------------------------------
27
28 class HasText h
29 where
30 hasText :: h -> [Text]
31
32 -----------------------------------------------------------------
33 -- French words to distinguish contexts
34 newtype Texte = Texte Text
35 newtype Paragraphe = Paragraphe Text
36 newtype Phrase = Phrase Text
37 newtype MultiTerme = MultiTerme Text
38 newtype Mot = Mot Text
39 newtype Lettre = Lettre Text
40
41 -- | Type syn seems obvious
42 type Titre = Phrase
43
44 -----------------------------------------------------------------
45
46 instance Show Texte where
47 show (Texte t) = show t
48
49 instance Show Paragraphe where
50 show (Paragraphe p) = show p
51
52 instance Show Phrase where
53 show (Phrase p) = show p
54
55 instance Show MultiTerme where
56 show (MultiTerme mt) = show mt
57
58 instance Show Mot where
59 show (Mot t) = show t
60
61 instance Show Lettre where
62 show (Lettre l) = show l
63
64 -----------------------------------------------------------------
65
66 class Collage sup inf where
67 dec :: sup -> [inf]
68 inc :: [inf] -> sup
69
70 instance Collage Texte Paragraphe where
71 dec (Texte t) = map Paragraphe $ DT.splitOn "\n" t
72 inc = Texte . DT.intercalate "\n" . map (\(Paragraphe t) -> t)
73
74 instance Collage Paragraphe Phrase where
75 dec (Paragraphe t) = map Phrase $ sentences t
76 inc = Paragraphe . DT.unwords . map (\(Phrase p) -> p)
77
78 instance Collage Phrase MultiTerme where
79 dec (Phrase t) = map MultiTerme $ DT.words t
80 inc = Phrase . DT.unwords . map (\(MultiTerme p) -> p)
81
82 instance Collage MultiTerme Mot where
83 dec (MultiTerme mt) = map Mot $ DT.words mt
84 inc = MultiTerme . DT.intercalate " " . map (\(Mot m) -> m)
85
86 -------------------------------------------------------------------
87 -- Contexts of text
88 sentences :: Text -> [Text]
89 sentences txt = map DT.pack $ segment $ DT.unpack txt
90
91 sentences' :: Text -> [Text]
92 sentences' txt = split isCharStop txt
93
94 isCharStop :: Char -> Bool
95 isCharStop c = c `elem` ['.','?','!']
96
97 unsentences :: [Text] -> Text
98 unsentences txts = DT.intercalate " " txts
99
100 -- | https://en.wikipedia.org/wiki/Text_mining
101 testText_en :: Text
102 testText_en = DT.pack "Text mining, also referred to as text data mining, roughly equivalent to text analytics, is the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities). Text analysis involves information retrieval, lexical analysis to study word frequency distributions, pattern recognition, tagging/annotation, information extraction, data mining techniques including link and association analysis, visualization, and predictive analytics. The overarching goal is, essentially, to turn text into data for analysis, via application of natural language processing (NLP) and analytical methods. A typical application is to scan a set of documents written in a natural language and either model the document set for predictive classification purposes or populate a database or search index with the information extracted."
103
104
105 testText_en_2 :: Text
106 testText_en_2 = DT.pack "It is hard to detect important articles in a specific context. Information retrieval techniques based on full text search can be inaccurate to identify main topics and they are not able to provide an indication about the importance of the article. Generating a citation network is a good way to find most popular articles but this approach is not context aware. The text around a citation mark is generally a good summary of the referred article. So citation context analysis presents an opportunity to use the wisdom of crowd for detecting important articles in a context sensitive way. In this work, we analyze citation contexts to rank articles properly for a given topic. The model proposed uses citation contexts in order to create a directed and edge-labeled citation network based on the target topic. Then we apply common ranking algorithms in order to find important articles in this newly created network. We showed that this method successfully detects a good subset of most prominent articles in a given topic. The biggest contribution of this approach is that we are able to identify important articles for a given search term even though these articles do not contain this search term. This technique can be used in other linked documents including web pages, legal documents, and patents as well as scientific papers."
107
108
109 -- | https://fr.wikipedia.org/wiki/Fouille_de_textes
110 testText_fr :: Text
111 testText_fr = DT.pack "La fouille de textes ou « l'extraction de connaissances » dans les textes est une spécialisation de la fouille de données et fait partie du domaine de l'intelligence artificielle. Cette technique est souvent désignée sous l'anglicisme text mining. Elle désigne un ensemble de traitements informatiques consistant à extraire des connaissances selon un critère de nouveauté ou de similarité dans des textes produits par des humains pour des humains. Dans la pratique, cela revient à mettre en algorithme un modèle simplifié des théories linguistiques dans des systèmes informatiques d'apprentissage et de statistiques. Les disciplines impliquées sont donc la linguistique calculatoire, l'ingénierie des langues, l'apprentissage artificiel, les statistiques et l'informatique."
112
113 termTests :: Text
114 termTests = "It is hard to detect important articles in a specific context. Information retrieval techniques based on full text search can be inaccurate to identify main topics and they are not able to provide an indication about the importance of the article. Generating a citation network is a good way to find most popular articles but this approach is not context aware. The text around a citation mark is generally a good summary of the referred article. So citation context analysis presents an opportunity to use the wisdom of crowd for detecting important articles in a context sensitive way. In this work, we analyze citation contexts to rank articles properly for a given topic. The model proposed uses citation contexts in order to create a directed and edge-labeled citation network based on the target topic. Then we apply common ranking algorithms in order to find important articles in this newly created network. We showed that this method successfully detects a good subset of most prominent articles in a given topic. The biggest contribution of this approach is that we are able to identify important articles for a given search term even though these articles do not contain this search term. This technique can be used in other linked documents including web pages, legal documents, and patents as well as scientific papers."
115
116
117 -- | Ngrams Test
118 -- >> ngramsTest testText
119 -- 248
120 --ngramsTest :: Text -> Int
121 --ngramsTest x = length ws
122 -- where
123 -- --txt = concat <$> lines <$> clean <$> readFile filePath
124 -- txt = clean x
125 -- -- | Number of sentences
126 -- --ls = sentences $ txt
127 -- -- | Number of monograms used in the full text
128 -- ws = ngrams $ txt
129 -- -- | stem ngrams
130 -- TODO
131 -- group ngrams
132 --ocs = occ $ ws
133