2 Module : Gargantext.Core.Methods.Matrix.Accelerate.Utils
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 This module aims at implementig distances of terms context by context is
11 the same referential of corpus.
13 Implementation use Accelerate library which enables GPU and CPU computation:
15 * Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover.
16 [Accelerating Haskell Array Codes with Multicore GPUs][CKLM+11].
17 In _DAMP '11: Declarative Aspects of Multicore Programming_, ACM, 2011.
19 * Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, and Ryan R. Newton.
20 [Type-safe Runtime Code Generation: Accelerate to LLVM][MCGN15].
21 In _Haskell '15: The 8th ACM SIGPLAN Symposium on Haskell_, ACM, 2015.
25 {-# LANGUAGE TypeFamilies #-}
26 {-# LANGUAGE TypeOperators #-}
27 {-# LANGUAGE ScopedTypeVariables #-}
28 {-# LANGUAGE ViewPatterns #-}
30 module Gargantext.Core.Methods.Matrix.Accelerate.Utils
33 import qualified Data.Foldable as P (foldl1)
34 import Debug.Trace (trace)
35 import Data.Array.Accelerate
36 import Data.Array.Accelerate.Interpreter (run)
37 import qualified Gargantext.Prelude as P
39 -----------------------------------------------------------------------
40 runExp :: Elt e => Exp e -> e
41 runExp e = indexArray (run (unit e)) Z
43 -----------------------------------------------------------------------
47 -- Vector (Z :. 3) [0,1,2]
48 vector :: Elt c => Int -> [c] -> (Array (Z :. Int) c)
49 vector n l = fromList (Z :. n) l
53 -- >>> matrix 3 ([1..] :: [Double])
54 -- Matrix (Z :. 3 :. 3)
58 matrix :: Elt c => Int -> [c] -> Matrix c
59 matrix n l = fromList (Z :. n :. n) l
61 -- | Two ways to get the rank (as documentation)
63 -- >>> rank (matrix 3 ([1..] :: [Int]))
65 rank :: (Matrix a) -> Int
66 rank m = arrayRank $ arrayShape m
68 -----------------------------------------------------------------------
69 -- | Dimension of a square Matrix
70 -- How to force use with SquareMatrix ?
73 -- | Get Dimension of a square Matrix
75 -- >>> dim (matrix 3 ([1..] :: [Int]))
77 dim :: Matrix a -> Dim
80 Z :. _ :. n = arrayShape m
81 -- indexTail (arrayShape m)
83 -----------------------------------------------------------------------
85 -- | Sum of a Matrix by Column
87 -- >>> run $ matSumCol 3 (use $ matrix 3 [1..])
88 -- Matrix (Z :. 3 :. 3)
89 -- [ 12.0, 15.0, 18.0,
92 matSumCol :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
93 matSumCol r mat = replicate (constant (Z :. (r :: Int) :. All)) $ sum $ transpose mat
95 matSumCol' :: Matrix Double -> Matrix Double
96 matSumCol' m = run $ matSumCol n m'
102 -- | Proba computes de probability matrix: all cells divided by thee sum of its column
103 -- if you need get the probability on the lines, just transpose it
105 -- >>> run $ matProba 3 (use $ matrix 3 [1..])
106 -- Matrix (Z :. 3 :. 3)
107 -- [ 8.333333333333333e-2, 0.13333333333333333, 0.16666666666666666,
108 -- 0.3333333333333333, 0.3333333333333333, 0.3333333333333333,
109 -- 0.5833333333333334, 0.5333333333333333, 0.5]
110 matProba :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
111 matProba r mat = zipWith (/) mat (matSumCol r mat)
113 -- | Diagonal of the matrix
115 -- >>> run $ diag (use $ matrix 3 ([1..] :: [Int]))
116 -- Vector (Z :. 3) [1,5,9]
120 diag m = backpermute (indexTail (shape m))
121 (lift1 (\(Z :. x) -> (Z :. x :. (x :: Exp Int))))
124 -- | Divide by the Diagonal of the matrix
126 -- >>> run $ divByDiag 3 (use $ matrix 3 ([1..] :: [Double]))
127 -- Matrix (Z :. 3 :. 3)
128 -- [ 1.0, 0.4, 0.3333333333333333,
129 -- 4.0, 1.0, 0.6666666666666666,
131 divByDiag :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
132 divByDiag d mat = zipWith (/) mat (replicate (constant (Z :. (d :: Int) :. All)) $ diag mat)
134 -----------------------------------------------------------------------
135 -- | Filters the matrix with the minimum of maximums
137 -- >>> run $ matMiniMax $ use $ matrix 3 [1..]
138 -- Matrix (Z :. 3 :. 3)
142 matMiniMax :: (Elt a, Ord a, P.Num a)
145 matMiniMax m = filterWith' miniMax' (constant 0) m
147 miniMax' = the $ minimum $ maximum m
150 -- | Filters the matrix with a constant
152 -- >>> run $ matFilter 5 $ use $ matrix 3 [1..]
153 -- Matrix (Z :. 3 :. 3)
157 filter' :: Double -> Acc (Matrix Double) -> Acc (Matrix Double)
158 filter' t m = filterWith t 0 m
160 filterWith :: Double -> Double -> Acc (Matrix Double) -> Acc (Matrix Double)
161 filterWith t v m = map (\x -> ifThenElse (x > (constant t)) x (constant v)) (transpose m)
163 filterWith' :: (Elt a, Ord a) => Exp a -> Exp a -> Acc (Matrix a) -> Acc (Matrix a)
164 filterWith' t v m = map (\x -> ifThenElse (x > t) x v) m
168 -- run $ (identityMatrix (DAA.constant (10::Int)) :: DAA.Acc (DAA.Matrix Int)) Matrix (Z :. 10 :. 10)
169 identityMatrix :: Num a => Exp Int -> Acc (Matrix a)
171 let zeros = fill (index2 n n) 0
172 ones = fill (index1 n) 1
174 permute const zeros (\(unindex1 -> i) -> index2 i i) ones
177 eyeMatrix :: Num a => Dim -> Acc (Matrix a)
179 let ones = fill (index2 n n) 1
180 zeros = fill (index1 n) 0
183 permute const ones (\(unindex1 -> i) -> index2 i i) zeros
186 data Direction = MatCol (Exp Int) | MatRow (Exp Int) | Diag
188 nullOf :: Num a => Dim -> Direction -> Acc (Matrix a)
190 let ones = fill (index2 n n) 1
191 zeros = fill (index2 n n) 0
194 permute const ones ( lift1 ( \(Z :. (i :: Exp Int) :. (_j:: Exp Int))
196 MatCol m -> (Z :. i :. m)
197 MatRow m -> (Z :. m :. i)
198 Diag -> (Z :. i :. i)
203 nullOfWithDiag :: Num a => Dim -> Direction -> Acc (Matrix a)
204 nullOfWithDiag n dir = zipWith (*) (nullOf n dir) (nullOf n Diag)
207 divide :: (Elt a, Ord a, P.Fractional (Exp a), P.Num a)
208 => Acc (Matrix a) -> Acc (Matrix a) -> Acc (Matrix a)
209 divide = zipWith divide'
211 divide' a b = ifThenElse (b > (constant 0))
216 sumRowMin :: (Num a, Ord a) => Dim -> Acc (Matrix a) -> Acc (Matrix a)
217 sumRowMin n m = {-trace (P.show $ run m') $-} m'
219 m' = reshape (shape m) vs
221 $ P.map (\z -> sumRowMin1 n (constant z) m) [0..n-1]
223 sumRowMin1 :: (Num a, Ord a) => Dim -> Exp Int -> Acc (Matrix a) -> Acc (Vector a)
224 sumRowMin1 n x m = trace (P.show (run m,run $ transpose m)) $ m''
226 m'' = sum $ zipWith min (transpose m) m
227 _m' = zipWith (*) (zipWith (*) (nullOf n (MatCol x)) $ nullOfWithDiag n (MatRow x)) m
230 sumColMin :: (Num a, Ord a) => Dim -> Acc (Matrix a) -> Acc (Matrix a)
231 sumColMin n m = reshape (shape m) vs
234 $ P.map (\z -> sumColMin1 n (constant z) m) [0..n-1]
237 sumColMin1 :: (Num a) => Dim -> Exp Int -> Acc (Matrix a) -> Acc (Matrix a)
238 sumColMin1 n x m = zipWith (*) (nullOfWithDiag n (MatCol x)) m
242 {- | WIP fun with indexes
243 selfMatrix :: Num a => Dim -> Acc (Matrix a)
245 let zeros = fill (index2 n n) 0
246 ones = fill (index2 n n) 1
249 permute const ones ( lift1 ( \(Z :. (i :: Exp Int) :. (_j:: Exp Int))
250 -> -- ifThenElse (i /= j)
255 selfMatrix' :: (Elt a, P.Num (Exp a)) => Array DIM2 a -> Matrix a
256 selfMatrix' m' = run $ selfMatrix n
261 -------------------------------------------------
262 diagNull :: Num a => Dim -> Acc (Matrix a) -> Acc (Matrix a)
263 diagNull n m = zipWith (*) m eye
267 -------------------------------------------------
268 crossProduct :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
269 crossProduct n m = {-trace (P.show (run m',run m'')) $-} zipWith (*) m' m''
272 m'' = transpose $ cross n m
275 crossT :: Matrix Double -> Matrix Double
276 crossT = run . transpose . use
278 crossProduct' :: Matrix Double -> Matrix Double
279 crossProduct' m = run $ crossProduct n m'
284 runWith :: (Arrays c, Elt a1)
285 => (Dim -> Acc (Matrix a1) -> a2 -> Acc c)
289 runWith f m = run . f (dim m) (use m)
292 cross :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
293 cross n mat = diagNull n (matSumCol n $ diagNull n mat)
295 cross' :: Matrix Double -> Matrix Double
296 cross' mat = run $ cross n mat'
303 -- | Hypothesis to test maybe later (or not)
304 -- TODO ask accelerate for instances to ease such writtings:
305 p_ :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
306 p_ m = zipWith (/) m (n_ m)
308 n_ :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
309 n_ m = backpermute (shape m)
310 (lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int))
311 -> (ifThenElse (i < j) (lift (Z :. j :. j)) (lift (Z :. i :. i)) :: Exp DIM2)
316 theMatrix :: Int -> Matrix Int
317 theMatrix n = matrix n (dataMatrix n)
319 dataMatrix :: Int -> [Int]
320 dataMatrix x | (P.==) x 2 = [ 1, 1
324 | (P.==) x 3 = [ 1, 1, 2
328 | (P.==) x 4 = [ 1, 1, 2, 3
333 | P.otherwise = P.undefined
336 theResult :: Int -> Matrix Double
337 theResult n | (P.==) n 2 = let r = 1.6094379124341003 in [ 0, r, r, 0]
338 | P.otherwise = [ 1, 1 ]
343 => Int -> [e] -> Acc (Array ((Z :. Int) :. Int) e)
344 colMatrix n ns = replicate (constant (Z :. (n :: Int) :. All)) v
346 v = use $ vector (P.length ns) ns
348 -----------------------------------------------------------------------