2 Module : Gargantext.Graph.Distances.Matrix
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 This module aims at implementig distances of terms context by context is
11 the same referential of corpus.
14 Implementation use Accelerate library which enables GPU and CPU computation:
16 * Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover.
17 [Accelerating Haskell Array Codes with Multicore GPUs][CKLM+11].
18 In _DAMP '11: Declarative Aspects of Multicore Programming_, ACM, 2011.
20 * Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and Ben Lippmeier.
21 [Optimising Purely Functional GPU Programs][MCKL13].
22 In _ICFP '13: The 18th ACM SIGPLAN International Conference on Functional Programming_, ACM, 2013.
24 * Robert Clifton-Everest, Trevor L. McDonell, Manuel M. T. Chakravarty, and Gabriele Keller.
25 [Embedding Foreign Code][CMCK14].
26 In _PADL '14: The 16th International Symposium on Practical Aspects of Declarative Languages_, Springer-Verlag, LNCS, 2014.
28 * Trevor L. McDonell, Manuel M. T. Chakravarty, Vinod Grover, and Ryan R. Newton.
29 [Type-safe Runtime Code Generation: Accelerate to LLVM][MCGN15].
30 In _Haskell '15: The 8th ACM SIGPLAN Symposium on Haskell_, ACM, 2015.
34 {-# LANGUAGE TypeFamilies #-}
35 {-# LANGUAGE TypeOperators #-}
36 {-# LANGUAGE ScopedTypeVariables #-}
38 module Gargantext.Viz.Graph.Distances.Matrice
41 import Data.Array.Accelerate
42 import Data.Array.Accelerate.Interpreter (run)
44 import qualified Gargantext.Prelude as P
47 -----------------------------------------------------------------------
51 -- Vector (Z :. 3) [0,1,2]
52 vector :: Int -> (Array (Z :. Int) Int)
53 vector n = fromList (Z :. n) [0..n]
57 -- >>> matrix 3 ([1..] :: [Double])
58 -- Matrix (Z :. 3 :. 3)
62 matrix :: Elt c => Int -> [c] -> Matrix c
63 matrix n l = fromList (Z :. n :. n) l
65 -- | Two ways to get the rank (as documentation)
67 -- >>> rank (matrix 3 ([1..] :: [Int]))
69 rank :: (Matrix a) -> Int
70 rank m = arrayRank $ arrayShape m
72 -----------------------------------------------------------------------
73 -- | Dimension of a square Matrix
74 -- How to force use with SquareMatrix ?
77 -- | Get Dimension of a square Matrix
79 -- >>> dim (matrix 3 ([1..] :: [Int]))
81 dim :: Matrix a -> Dim
84 Z :. _ :. n = arrayShape m
85 -- indexTail (arrayShape m)
87 -----------------------------------------------------------------------
89 -- | Sum of a Matrix by Column
91 -- >>> run $ matSumCol 3 (use $ matrix 3 [1..])
92 -- Matrix (Z :. 3 :. 3)
93 -- [ 12.0, 15.0, 18.0,
96 matSumCol :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
97 matSumCol r mat = replicate (constant (Z :. (r :: Int) :. All)) $ sum $ transpose mat
99 matSumCol' :: Matrix Double -> Matrix Double
100 matSumCol' m = run $ matSumCol n m'
106 -- | Proba computes de probability matrix: all cells divided by thee sum of its column
107 -- if you need get the probability on the lines, just transpose it
109 -- >>> run $ matProba 3 (use $ matrix 3 [1..])
110 -- Matrix (Z :. 3 :. 3)
111 -- [ 8.333333333333333e-2, 0.13333333333333333, 0.16666666666666666,
112 -- 0.3333333333333333, 0.3333333333333333, 0.3333333333333333,
113 -- 0.5833333333333334, 0.5333333333333333, 0.5]
114 matProba :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
115 matProba r mat = zipWith (/) mat (matSumCol r mat)
117 -- | Diagonal of the matrix
119 -- >>> run $ diag (use $ matrix 3 ([1..] :: [Int]))
120 -- Vector (Z :. 3) [1,5,9]
121 diag :: Elt e => Acc (Matrix e) -> Acc (Vector e)
122 diag m = backpermute (indexTail (shape m)) (lift1 (\(Z :. x) -> (Z :. x :. (x :: Exp Int)))) m
124 -- | Divide by the Diagonal of the matrix
126 -- >>> run $ divByDiag 3 (use $ matrix 3 ([1..] :: [Double]))
127 -- Matrix (Z :. 3 :. 3)
128 -- [ 1.0, 0.4, 0.3333333333333333,
129 -- 4.0, 1.0, 0.6666666666666666,
131 divByDiag :: Dim -> Acc (Matrix Double) -> Acc (Matrix Double)
132 divByDiag d mat = zipWith (/) mat (replicate (constant (Z :. (d :: Int) :. All)) $ diag mat)
134 -----------------------------------------------------------------------
135 -- | Filters the matrix with the minimum of maximums
137 -- >>> run $ matMiniMax $ use $ matrix 3 [1..]
138 -- Matrix (Z :. 3 :. 3)
142 matMiniMax :: Acc (Matrix Double) -> Acc (Matrix Double)
143 matMiniMax m = map (\x -> ifThenElse (x > miniMax') x 0) (transpose m)
145 miniMax' = (the $ minimum $ maximum m)
147 -- | Filters the matrix with a constant
149 -- >>> run $ matFilter 5 $ use $ matrix 3 [1..]
150 -- Matrix (Z :. 3 :. 3)
154 matFilter :: Double -> Acc (Matrix Double) -> Acc (Matrix Double)
155 matFilter t m = map (\x -> ifThenElse (x > (constant t)) x 0) (transpose m)
157 -----------------------------------------------------------------------
158 -- * Measures of proximity
159 -----------------------------------------------------------------------
160 -- ** Conditional distance
162 -- *** Conditional distance (basic)
164 -- | Conditional distance (basic version)
166 -- 2 main measures are actually implemented in order to compute the
167 -- proximity of two terms: conditional and distributional
169 -- Conditional measure is an absolute measure which reflects
170 -- interactions of 2 terms in the corpus.
171 measureConditional :: Matrix Int -> Matrix Double
172 --measureConditional m = run (matMiniMax $ matProba (dim m) $ map fromIntegral $ use m)
173 measureConditional m = run $ matProba (dim m)
178 -- *** Conditional distance (advanced)
180 -- | Conditional distance (advanced version)
182 -- The conditional measure P(i|j) of 2 terms @i@ and @j@, also called
183 -- "confidence" , is the maximum probability between @i@ and @j@ to see
184 -- @i@ in the same context of @j@ knowing @j@.
186 -- If N(i) (resp. N(j)) is the number of occurrences of @i@ (resp. @j@)
187 -- in the corpus and _[n_{ij}\] the number of its occurrences we get:
189 -- \[P_c=max(\frac{n_i}{n_{ij}},\frac{n_j}{n_{ij}} )\]
190 conditional' :: Matrix Int -> (Matrix InclusionExclusion, Matrix SpecificityGenericity)
191 conditional' m = ( run $ ie $ map fromIntegral $ use m
192 , run $ sg $ map fromIntegral $ use m
195 ie :: Acc (Matrix Double) -> Acc (Matrix Double)
196 ie mat = map (\x -> x / (2*n-1)) $ zipWith (+) (xs mat) (ys mat)
197 sg :: Acc (Matrix Double) -> Acc (Matrix Double)
198 sg mat = map (\x -> x / (2*n-1)) $ zipWith (-) (xs mat) (ys mat)
206 xs :: Acc (Matrix Double) -> Acc (Matrix Double)
207 xs mat = zipWith (-) (matSumCol r $ matProba r mat) (matProba r mat)
208 ys :: Acc (Matrix Double) -> Acc (Matrix Double)
209 ys mat = zipWith (-) (matSumCol r $ transpose $ matProba r mat) (matProba r mat)
211 -----------------------------------------------------------------------
212 -- ** Distributional Distance
214 -- | Distributional Distance Measure
216 -- Distributional measure is a relative measure which depends on the
217 -- selected list, it represents structural equivalence of mutual information.
219 -- The distributional measure P(c) of @i@ and @j@ terms is: \[
220 -- S_{MI} = \frac {\sum_{k \neq i,j ; MI_{ik} >0}^{} \min(MI_{ik},
221 -- MI_{jk})}{\sum_{k \neq i,j ; MI_{ik}>0}^{}} \]
223 -- Mutual information
224 -- \[S_{MI}({i},{j}) = \log(\frac{C{ij}}{E{ij}})\]
226 -- Number of cooccurrences of @i@ and @j@ in the same context of text
229 -- The expected value of the cooccurrences @i@ and @j@ (given a map list of size @n@)
230 -- \[E_{ij}^{m} = \frac {S_{i} S_{j}} {N_{m}}\]
232 -- Total cooccurrences of term @i@ given a map list of size @m@
233 -- \[S_{i} = \sum_{j, j \neq i}^{m} S_{ij}\]
235 -- Total cooccurrences of terms given a map list of size @m@
236 -- \[N_{m} = \sum_{i,i \neq i}^{m} \sum_{j, j \neq j}^{m} S_{ij}\]
238 distributional :: Matrix Int -> Matrix Double
239 distributional m = run $ matMiniMax
241 $ map fromIntegral -- ^ from Int to Double
242 $ use m -- ^ push matrix in Accelerate type
244 -- filter m = zipWith (\a b -> max a b) m (transpose m)
246 ri :: Acc (Matrix Double) -> Acc (Matrix Double)
247 ri mat = zipWith (/) mat1 mat2
249 mat1 = matSumCol n $ zipWith min (s_mi mat) (s_mi $ transpose mat)
250 mat2 = matSumCol n mat
252 s_mi :: Acc (Matrix Double) -> Acc (Matrix Double)
253 s_mi m' = zipWith (\a b -> log (a/b)) m'
254 $ zipWith (/) (crossProduct m') (total m')
256 total :: Acc (Matrix Double) -> Acc (Matrix Double)
257 total = replicate (constant (Z :. n :. n)) . sum . sum
262 crossProduct :: Acc (Matrix Double) -> Acc (Matrix Double)
263 crossProduct m''' = zipWith (*) (cross m''' ) (cross (transpose m'''))
264 cross :: Acc (Matrix Double) -> Acc (Matrix Double)
265 cross mat = zipWith (-) (matSumCol n mat) (mat)
269 cross :: Matrix Double -> Matrix Double
270 cross mat = run $ zipWith (-) (matSumCol n mat') (mat')
277 -----------------------------------------------------------------------
278 -----------------------------------------------------------------------
279 -- * Specificity and Genericity
281 {- | Metric Specificity and genericity: select terms
283 - let N termes and occurrences of i \[N{i}\]
285 - Cooccurrences of i and j \[N{ij}\]
286 - Probability to get i given j : \[P(i|j)=N{ij}/N{j}\]
288 - Genericity of i \[Gen(i) = \frac{\sum_{j \neq i,j} P(i|j)}{N-1}\]
289 - Specificity of j \[Spec(i) = \frac{\sum_{j \neq i,j} P(j|i)}{N-1}\]
291 - \[Inclusion (i) = Gen(i) + Spec(i)\)
292 - \[GenericityScore = Gen(i)- Spec(i)\]
294 - References: Science mapping with asymmetrical paradigmatic proximity
295 Jean-Philippe Cointet (CREA, TSV), David Chavalarias (CREA) (Submitted
296 on 15 Mar 2008), Networks and Heterogeneous Media 3, 2 (2008) 267 - 276,
297 arXiv:0803.2315 [cs.OH]
299 type InclusionExclusion = Double
300 type SpecificityGenericity = Double
302 data SquareMatrix = SymetricMatrix | NonSymetricMatrix
303 type SymetricMatrix = Matrix
304 type NonSymetricMatrix = Matrix
307 incExcSpeGen :: Matrix Int -> (Vector InclusionExclusion, Vector SpecificityGenericity)
308 incExcSpeGen m = (run' inclusionExclusion m, run' specificityGenericity m)
310 run' fun mat = run $ fun $ map fromIntegral $ use mat
312 -- | Inclusion (i) = Gen(i)+Spec(i)
313 inclusionExclusion :: Acc (Matrix Double) -> Acc (Vector Double)
314 inclusionExclusion mat = zipWith (+) (pV mat) (pV mat)
316 -- | Genericity score = Gen(i)- Spec(i)
317 specificityGenericity :: Acc (Matrix Double) -> Acc (Vector Double)
318 specificityGenericity mat = zipWith (+) (pH mat) (pH mat)
320 -- | Gen(i) : 1/(N-1)*Sum(j!=i, P(i|j)) : Genericity of i
321 pV :: Acc (Matrix Double) -> Acc (Vector Double)
322 pV mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ij mat
324 -- | Spec(i) : 1/(N-1)*Sum(j!=i, P(j|i)) : Specificity of j
325 pH :: Acc (Matrix Double) -> Acc (Vector Double)
326 pH mat = map (\x -> (x-1)/(cardN-1)) $ sum $ p_ji mat
329 cardN = constant (P.fromIntegral (dim m) :: Double)
332 -- | P(i|j) = Nij /N(jj) Probability to get i given j
333 --p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (SymetricMatrix e) -> Acc (Matrix e)
334 p_ij :: (Elt e, P.Fractional (Exp e)) => Acc (Matrix e) -> Acc (Matrix e)
335 p_ij m = zipWith (/) m (n_jj m)
337 n_jj :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
338 n_jj myMat' = backpermute (shape m)
339 (lift1 ( \(Z :. (_ :: Exp Int) :. (j:: Exp Int))
344 -- | P(j|i) = Nij /N(ii) Probability to get i given j
346 p_ji :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
347 p_ji = transpose . p_ij
350 -- | Step to ckeck the result in visual/qualitative tests
351 incExcSpeGen_proba :: Matrix Int -> Matrix Double
352 incExcSpeGen_proba m = run' pro m
354 run' fun mat = run $ fun $ map fromIntegral $ use mat
359 -- | Hypothesis to test maybe later (or not)
360 -- TODO ask accelerate for instances to ease such writtings:
361 p_ :: (Elt e, P.Fractional (Exp e)) => Acc (Array DIM2 e) -> Acc (Array DIM2 e)
362 p_ m = zipWith (/) m (n_ m)
364 n_ :: Elt e => Acc (SymetricMatrix e) -> Acc (Matrix e)
365 n_ m = backpermute (shape m)
366 (lift1 ( \(Z :. (i :: Exp Int) :. (j:: Exp Int))
367 -> (ifThenElse (i < j) (lift (Z :. j :. j)) (lift (Z :. i :. i)) :: Exp DIM2)
372 -- * For Tests (to be removed)
373 -- | Test perfermance with this matrix
374 -- TODO : add this in a benchmark folder
375 distriTest :: Matrix Double
376 distriTest = distributional $ matrix 100 [1..]
377 -----------------------------------------------------------------------