2 Module : Gargantext.Text.Ngrams
3 Description : Ngrams definition and tools
4 Copyright : (c) CNRS, 2017 - present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 An @n-gram@ is a contiguous sequence of n items from a given sample of
11 text. In Gargantext application the items are words, n is a non negative
14 Using Latin numerical prefixes, an n-gram of size 1 is referred to as a
15 "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size
16 3 is a "trigram". English cardinal numbers are sometimes used, e.g.,
17 "four-gram", "five-gram", and so on.
19 Source: https://en.wikipedia.org/wiki/Ngrams
23 compute occ by node of Tree
24 group occs according groups
31 {-# LANGUAGE NoImplicitPrelude #-}
32 {-# LANGUAGE TemplateHaskell #-}
34 module Gargantext.Text.Terms
38 import Data.Text (Text)
39 import Data.Traversable
40 import GHC.Base (String)
42 import Gargantext.Prelude
43 import Gargantext.Core
44 import Gargantext.Core.Types
45 import Gargantext.Text.Terms.Multi (multiterms)
46 import Gargantext.Text.Terms.Mono (monoTerms)
47 import Gargantext.Text.Terms.Mono.Stem (stem)
49 import qualified Data.Set as Set
50 import qualified Data.List as List
51 import qualified Data.Text as Text
52 import Gargantext.Text (sentences)
53 import Gargantext.Text.Terms.Mono.Token.En (tokenize)
54 import Gargantext.Text.Terms.Eleve (mainEleveWith, Tries, Token, buildTries, toToken)
57 = Mono { _tt_lang :: lang }
58 | Multi { _tt_lang :: lang }
59 | MonoMulti { _tt_lang :: lang }
60 | Unsupervised { _tt_lang :: lang
62 , _tt_model :: Maybe (Tries Token ())
66 --group :: [Text] -> [Text]
70 -- map (filter (\t -> not . elem t)) $
71 ------------------------------------------------------------------------
72 -- | Sugar to extract terms from text (hiddeng mapM from end user).
73 --extractTerms :: Traversable t => TermType Lang -> t Text -> IO (t [Terms])
74 extractTerms :: TermType Lang -> [Text] -> IO [[Terms]]
75 extractTerms (Unsupervised l n m) xs = mapM (terms (Unsupervised l n m')) xs
77 m' = maybe (Just $ newTries n (Text.intercalate " " xs)) Just m
78 extractTerms termTypeLang xs = mapM (terms termTypeLang) xs
79 ------------------------------------------------------------------------
82 -- Multi : multi terms
83 -- MonoMulti : mono and multi
84 -- TODO : multi terms should exclude mono (intersection is not empty yet)
85 terms :: TermType Lang -> Text -> IO [Terms]
86 terms (Mono lang) txt = pure $ monoTerms lang txt
87 terms (Multi lang) txt = multiterms lang txt
88 terms (MonoMulti lang) txt = terms (Multi lang) txt
89 terms (Unsupervised lang n m) txt = termsUnsupervised m' n lang txt
91 m' = maybe (newTries n txt) identity m
92 -- terms (WithList list) txt = pure . concat $ extractTermsWithList list txt
93 ------------------------------------------------------------------------
95 text2term :: Lang -> [Text] -> Terms
96 text2term _ [] = Terms [] Set.empty
97 text2term lang txt = Terms txt (Set.fromList $ map (stem lang) txt)
99 isPunctuation :: Text -> Bool
100 isPunctuation x = List.elem x $ (Text.pack . pure)
101 <$> ("!?(),;." :: String)
103 -- | Unsupervised ngrams extraction
104 -- language agnostic extraction
106 -- TODO: newtype BlockText
107 termsUnsupervised :: Tries Token () -> Int -> Lang -> Text -> IO [Terms]
108 termsUnsupervised m n l =
112 . (List.filter (\l' -> List.length l' > 1))
117 newTries :: Int -> Text -> Tries Token ()
118 newTries n t = buildTries n (fmap toToken $ uniText t)
120 uniText :: Text -> [[Text]]
121 uniText = map (List.filter (not . isPunctuation))
123 . sentences -- | TODO get sentences according to lang