2 Module : Gargantext.Graph.Distances.Utils
3 Description : Tools to compute distances from Cooccurrences
4 Copyright : (c) CNRS, 2017-Present
5 License : AGPL + CECILL v3
6 Maintainer : team@gargantext.org
7 Stability : experimental
10 Basically @compute@ takes an accelerate function as first input, a Map
11 of coccurrences as second input and outputs a Map automatically using
15 --cooc2fgl :: Ord t, Integral n => Map (t, t) n -> Graph
20 {-# LANGUAGE BangPatterns #-}
21 {-# LANGUAGE FlexibleContexts #-}
22 {-# LANGUAGE NoImplicitPrelude #-}
23 {-# LANGUAGE TypeOperators #-}
24 {-# LANGUAGE MonoLocalBinds #-}
26 module Gargantext.Viz.Graph.Index
29 import qualified Data.Array.Accelerate as A
30 import qualified Data.Array.Accelerate.Interpreter as A
31 import Data.Array.Accelerate (Matrix, Elt, Shape, (:.)(..), Z(..))
33 import Data.Maybe (fromMaybe)
36 import qualified Data.Set as S
39 import qualified Data.Map.Strict as M
41 -- import Data.Vector (Vector)
43 import Gargantext.Prelude
47 -------------------------------------------------------------------------------
48 -------------------------------------------------------------------------------
49 score :: (Ord t) => (A.Matrix Int -> A.Matrix Double)
52 score f m = fromIndex fromI . mat2map . f $ cooc2mat toI m
54 (toI, fromI) = createIndices m
56 -------------------------------------------------------------------------------
57 -------------------------------------------------------------------------------
58 cooc2mat :: Ord t => Map t Index -> Map (t, t) Int -> Matrix Int
59 cooc2mat ti m = map2mat 0 n idx
62 idx = toIndex ti m -- it is important to make sure that toIndex is ran only once.
64 map2mat :: Elt a => a -> Int -> Map (Index, Index) a -> Matrix a
65 map2mat def n m = A.fromFunction shape (\(Z :. x :. y) -> fromMaybe def $ M.lookup (x, y) m)
69 mat2map :: (Elt a, Shape (Z :. Index)) =>
70 A.Array (Z :. Index :. Index) a -> Map (Index, Index) a
71 mat2map m = M.fromList . map f . A.toList . A.run . A.indexed $ A.use m
73 -- Z :. _ :. n = A.arrayShape m
74 f ((Z :. i :. j), x) = ((i, j), x)
76 -------------------------------------------------------------------------------
77 -------------------------------------------------------------------------------
78 toIndex :: Ord t => Map t Index -> Map (t,t) a -> Map (Index,Index) a
79 toIndex ni ns = indexConversion ni ns
81 fromIndex :: Ord t => Map Index t -> Map (Index, Index) a -> Map (t,t) a
82 fromIndex ni ns = indexConversion ni ns
84 indexConversion :: (Ord b, Ord k) => Map k b -> Map (k,k) a -> Map (b, b) a
85 indexConversion index ms = M.fromList $ map (\((k1,k2),c) -> ( ((M.!) index k1, (M.!) index k2), c)) (M.toList ms)
86 ---------------------------------------------------------------------------------
88 -------------------------------------------------------------------------------
89 --fromIndex' :: Ord t => Vector t -> Map (Index, Index) a -> Map (t,t) a
90 --fromIndex' vi ns = undefined
92 -- TODO: returing a Vector should be faster than a Map
93 -- createIndices' :: Ord t => Map (t, t) b -> (Map t Index, Vector t)
94 -- createIndices' = undefined
96 createIndices :: Ord t => Map (t, t) b -> (Map t Index, Map Index t)
97 createIndices = set2indices . map2set
99 map2set :: Ord t => Map (t, t) a -> Set t
100 map2set cs' = foldl' (\s ((t1,t2),_) -> insert [t1,t2] s ) S.empty (M.toList cs')
102 insert as s = foldl' (\s' t -> S.insert t s') s as
104 set2indices :: Ord t => Set t -> (Map t Index, Map Index t)
105 set2indices s = (M.fromList toIndex', M.fromList fromIndex')
107 fromIndex' = zip [0..] xs
108 toIndex' = zip xs [0..]